Nuprl Lemma : preserved_by_star

[T:Type]. ∀[P:T ⟶ ℙ]. ∀[R:T ⟶ T ⟶ ℙ].  (R preserves  R^* preserves P)


Proof




Definitions occuring in Statement :  rel_star: R^* preserved_by: preserves P uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  preserved_by: preserves P uall: [x:A]. B[x] implies:  Q all: x:A. B[x] rel_star: R^* infix_ap: y exists: x:A. B[x] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt prop: and: P ∧ Q member: t ∈ T bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) uimplies: supposing a false: False guard: {T} bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s]
Lemmas referenced :  and_wf equal_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int less_than_transitivity1 le_weakening less_than_irreflexivity eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int all_wf infix_ap_wf rel_exp_wf subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf set_wf less_than_wf primrec-wf2 nat_wf rel_star_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis addLevel hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation hypothesisEquality introduction extract_by_obid isectElimination applyLambdaEquality setElimination rename applyEquality levelHypothesis cumulativity because_Cache natural_numberEquality unionElimination equalityElimination equalityTransitivity independent_isectElimination dependent_functionElimination independent_functionElimination voidElimination functionExtensionality dependent_pairFormation promote_hyp instantiate lambdaEquality functionEquality universeEquality addEquality isect_memberEquality voidEquality intEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R  preserves  P  {}\mRightarrow{}  rel\_star(T;  R)  preserves  P)



Date html generated: 2017_04_14-AM-07_38_30
Last ObjectModification: 2017_02_27-PM-03_10_19

Theory : relations


Home Index