Nuprl Lemma : select-update-tuple
∀[m,n:ℕ]. ∀[L:Type List].
  (∀[x:tuple-type(L)]. ∀[y:Top].  (update-tuple(||L||;x;n;y).m ~ if (n =z m) then y else x.m fi )) supposing 
     (m < ||L|| and 
     n < ||L||)
Proof
Definitions occuring in Statement : 
select-tuple: x.n
, 
update-tuple: update-tuple(len;x;n;y)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
select-tuple: x.n
, 
update-tuple: update-tuple(len;x;n;y)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
pi1: fst(t)
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
cons: [a / b]
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
top_wf, 
tuple-type_wf, 
length_wf, 
list_wf, 
nat_wf, 
eq_int_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
intformeq_wf, 
intformnot_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__le, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
equal-wf-base, 
int_subtype_base, 
list-cases, 
tupletype_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
tupletype_cons_lemma, 
length_of_cons_lemma, 
add-subtract-cancel, 
le_wf, 
decidable__lt, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
null_wf, 
bool_cases, 
assert_of_null, 
pi2_wf, 
length_wf_nat, 
non_neg_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
instantiate, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
equalityElimination, 
baseClosed, 
productElimination, 
because_Cache, 
promote_hyp, 
cumulativity, 
impliesFunctionality, 
baseApply, 
closedConclusion, 
applyEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
pointwiseFunctionality, 
imageElimination, 
independent_pairEquality, 
hyp_replacement, 
applyLambdaEquality, 
addEquality
Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[L:Type  List].
    (\mforall{}[x:tuple-type(L)].  \mforall{}[y:Top].
          (update-tuple(||L||;x;n;y).m  \msim{}  if  (n  =\msubz{}  m)  then  y  else  x.m  fi  ))  supposing 
          (m  <  ||L||  and 
          n  <  ||L||)
Date html generated:
2017_04_17-AM-09_30_25
Last ObjectModification:
2017_02_27-PM-05_31_27
Theory : tuples
Home
Index