Nuprl Lemma : assert-bag-has-no-repeats

[T:Type]. ∀[eq:EqDecider(T)]. ∀[b:bag(T)].  (↑bag-has-no-repeats(eq;b) ⇐⇒ bag-no-repeats(T;b))


Proof




Definitions occuring in Statement :  bag-has-no-repeats: bag-has-no-repeats(eq;b) bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) deq: EqDecider(T) assert: b uall: [x:A]. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] bag-has-no-repeats: bag-has-no-repeats(eq;b) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T bag-no-repeats: bag-no-repeats(T;bs) squash: T prop: subtype_rel: A ⊆B nat: rev_implies:  Q uimplies: supposing a true: True guard: {T} uiff: uiff(P;Q) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q less_than: a < b not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  equal_wf bag-size_wf bag-remove-repeats_wf nat_wf squash_wf true_wf bag_wf bag-remove-repeats-if-no-repeats subtype_rel_self iff_weakening_equal bag-no-repeats_wf assert_of_eq_int assert_wf eq_int_wf iff_wf deq_wf bag-remove-repeats-no-repeats sub-bag_antisymmetry sub-bag-iff count-bag-remove-repeats lt_int_wf bag-count_wf bool_wf eqtt_to_assert assert_of_lt_int decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf nat_properties bag-size-partition int_subtype_base bag-size-as-summation bag-summation-equal-implies-all-equal-1 bag-member_wf intformeq_wf int_formula_prop_eq_lemma bag-count-member bag-member-remove-repeats
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut independent_pairFormation lambdaFormation introduction sqequalRule sqequalHypSubstitution imageElimination hypothesis imageMemberEquality hypothesisEquality thin baseClosed extract_by_obid isectElimination intEquality applyEquality lambdaEquality setElimination rename equalityTransitivity equalitySymmetry because_Cache independent_isectElimination natural_numberEquality instantiate productElimination independent_functionElimination addLevel universeEquality hyp_replacement applyLambdaEquality dependent_functionElimination unionElimination equalityElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality promote_hyp cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[b:bag(T)].    (\muparrow{}bag-has-no-repeats(eq;b)  \mLeftarrow{}{}\mRightarrow{}  bag-no-repeats(T;b))



Date html generated: 2019_10_16-AM-11_32_54
Last ObjectModification: 2018_08_25-AM-11_18_22

Theory : bags_2


Home Index