Nuprl Lemma : bag-count-member

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[b:bag(T)].  uiff(1 ≤ (#x in b);x ↓∈ b)


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T sq_stable: SqStable(P) implies:  Q exists: x:A. B[x] prop: deq: EqDecider(T) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bag-member: x ↓∈ bs nat: le: A ≤ B not: ¬A false: False bag-filter: [x∈b|p[x]] bag-size: #(bs) ge: i ≥  all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q top: Top true: True guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) bool: 𝔹 unit: Unit it: btrue: tt eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  bag-count-sqequal bag_to_squash_list sq_stable__bag-member le_wf bag-size_wf assert_wf bag-filter_wf bag-member_wf nat_wf sq_stable__le less_than'_wf bag-count_wf bag_wf deq_wf length_of_not_nil filter_wf5 l_member_wf member_exists member_filter bag-member-list decidable-equal-deq and_wf equal_wf iff_wf squash_wf sq_stable__all sq_stable__iff sq_stable__equal sq_stable__assert assert_witness l_member_decomp length_wf_nat filter_append append_wf cons_wf nil_wf true_wf length_append subtype_rel_list top_wf iff_weakening_equal length_wf filter_cons_lemma filter_nil_lemma bool_wf equal-wf-T-base length_of_cons_lemma length_of_nil_lemma non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf bnot_wf not_wf eqof_wf le_weakening2 add_functionality_wrt_eq uiff_transitivity eqtt_to_assert safe-assert-deq iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin because_Cache hypothesisEquality hypothesis independent_pairFormation isect_memberFormation imageElimination independent_functionElimination productElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality setEquality cumulativity applyEquality setElimination rename lambdaEquality imageMemberEquality baseClosed independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity universeEquality isect_memberEquality independent_isectElimination lambdaFormation dependent_set_memberEquality functionExtensionality intEquality voidEquality addEquality unionElimination dependent_pairFormation int_eqEquality computeAll equalityElimination addLevel impliesFunctionality levelHypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[b:bag(T)].    uiff(1  \mleq{}  (\#x  in  b);x  \mdownarrow{}\mmember{}  b)



Date html generated: 2018_05_21-PM-09_52_02
Last ObjectModification: 2017_07_26-PM-06_31_35

Theory : bags_2


Home Index