Nuprl Lemma : bag_remove1_aux_property

[T:Type]
  ∀eq:EqDecider(T). ∀x:T. ∀L,checked:T List.
    ((∃as,bs:T List
       ((L ((as [x]) bs) ∈ (T List))
       ∧ (bag_remove1_aux(eq;checked;x;L) (inl ((rev(as) checked) bs)) ∈ (T List?))))
    ∨ ((¬(x ∈ L)) ∧ (bag_remove1_aux(eq;checked;x;L) (inr ⋅ ) ∈ (T List?))))


Proof




Definitions occuring in Statement :  bag_remove1_aux: bag_remove1_aux(eq;checked;a;as) l_member: (x ∈ l) reverse: rev(as) append: as bs cons: [a b] nil: [] list: List deq: EqDecider(T) it: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q unit: Unit inr: inr  inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q top: Top so_apply: x[s] implies:  Q bag_remove1_aux: bag_remove1_aux(eq;checked;a;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] deq: EqDecider(T) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A cand: c∧ B append: as bs list_ind: list_ind reverse: rev(as) rev-append: rev(as) bs list_accum: list_accum nil: [] squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf list_wf or_wf exists_wf equal_wf append_wf cons_wf nil_wf length_wf length-append not_wf l_member_wf equal-wf-T-base unit_wf2 bag_remove1_aux_wf list_ind_nil_lemma list_ind_cons_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot deq_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse it_wf equal-wf-base-T length_of_nil_lemma reverse_wf and_wf length_of_cons_lemma squash_wf true_wf iff_weakening_equal reverse-cons append_assoc cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality cumulativity hypothesisEquality hypothesis productEquality applyLambdaEquality isect_memberEquality voidElimination voidEquality unionEquality baseClosed independent_functionElimination dependent_functionElimination rename applyEquality setElimination unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation promote_hyp instantiate universeEquality inrFormation independent_pairFormation inrEquality inlEquality inlFormation dependent_set_memberEquality imageElimination natural_numberEquality imageMemberEquality hyp_replacement

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}x:T.  \mforall{}L,checked:T  List.
        ((\mexists{}as,bs:T  List
              ((L  =  ((as  @  [x])  @  bs))
              \mwedge{}  (bag\_remove1\_aux(eq;checked;x;L)  =  (inl  ((rev(as)  @  checked)  @  bs)))))
        \mvee{}  ((\mneg{}(x  \mmember{}  L))  \mwedge{}  (bag\_remove1\_aux(eq;checked;x;L)  =  (inr  \mcdot{}  ))))



Date html generated: 2018_05_21-PM-09_48_03
Last ObjectModification: 2017_07_26-PM-06_30_31

Theory : bags_2


Home Index