Nuprl Lemma : W-type-induction
∀[A:Type]
  ((∀x,y:A.  Dec(x = y ∈ A))
  ⇒ (∀[B:A ⟶ Type]. ∀[P:W-type(A; a.B[a]) ⟶ ℙ].
        ((∀a:A. ∀f:B[a] ⟶ W-type(A; a.B[a]).  ((∀b:B[a]. P[f b]) ⇒ P[W-sup(a;f)])) ⇒ (∀w:W-type(A; a.B[a]). P[w]))))
Proof
Definitions occuring in Statement : 
W-sup: W-sup(a;f), 
W-type: W-type(A; a.B[a]), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
squash: ↓T, 
Wselect: Wselect(w;s), 
W-select: W-select(w;s), 
ifthenelse: if b then t else f fi , 
null: null(as), 
nil: [], 
it: ⋅, 
btrue: tt, 
sq_stable: SqStable(P), 
isr: isr(x), 
assert: ↑b, 
bfalse: ff, 
false: False, 
true: True, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
subtype_rel: A ⊆r B, 
guard: {T}, 
ext-eq: A ≡ B, 
W-sup: W-sup(a;f), 
deq: EqDecider(T), 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
uiff: uiff(P;Q), 
eqof: eqof(d), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
W-type: W-type(A; a.B[a]), 
W-bars: W-bars(w;p)
Lemmas referenced : 
bool-bar-induction, 
unit_wf2, 
Wselect_wf, 
W-type_wf, 
true_wf, 
equal_wf, 
list_wf, 
isr_wf, 
set_wf, 
assert_wf, 
all_wf, 
append_wf, 
cons_wf, 
nil_wf, 
not_wf, 
nat_wf, 
W-sup_wf, 
decidable_wf, 
sq_stable__assert, 
false_wf, 
deq-exists, 
list_induction, 
list_ind_nil_lemma, 
W-type-ext, 
subtype_rel_weakening, 
list_ind_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
subtype_rel-equal, 
and_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
it_wf, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
bnot_wf, 
eqof_wf, 
member_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesisEquality, 
unionEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
cumulativity, 
universeEquality, 
voidElimination, 
natural_numberEquality, 
productElimination, 
promote_hyp, 
isect_memberEquality, 
voidEquality, 
hypothesis_subsumption, 
because_Cache, 
productEquality, 
equalityElimination, 
inlEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_pairFormation, 
instantiate, 
inrEquality, 
functionExtensionality, 
impliesFunctionality
Latex:
\mforall{}[A:Type]
    ((\mforall{}x,y:A.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:W-type(A;  a.B[a])  {}\mrightarrow{}  \mBbbP{}].
                ((\mforall{}a:A.  \mforall{}f:B[a]  {}\mrightarrow{}  W-type(A;  a.B[a]).    ((\mforall{}b:B[a].  P[f  b])  {}\mRightarrow{}  P[W-sup(a;f)]))
                {}\mRightarrow{}  (\mforall{}w:W-type(A;  a.B[a]).  P[w]))))
Date html generated:
2019_10_16-AM-11_38_01
Last ObjectModification:
2018_08_21-PM-02_00_11
Theory : bar!induction
Home
Index