Nuprl Lemma : Rice-theorem-for-Type_3
∀F:Type ⟶ 𝔹
  ((∀X,Y:Type.  (X ~ Y 
⇒ F X = F Y)) 
⇒ weak-continuity(𝔹;𝔹) 
⇒ ((∀X:Type. (↑(F X))) ∨ (∀X:Type. (¬↑(F X)))))
Proof
Definitions occuring in Statement : 
weak-continuity: weak-continuity(T;V)
, 
equipollent: A ~ B
, 
assert: ↑b
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
false: False
, 
weak-continuity: weak-continuity(T;V)
, 
decidable: Dec(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
isl: isl(x)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
sq_type: SQType(T)
Lemmas referenced : 
Rice-theorem-for-Type_2, 
weak-continuity_wf, 
bool_wf, 
all_wf, 
equipollent_wf, 
equal_wf, 
nat_wf, 
decidable_wf, 
equal-wf-T-base, 
isl_wf, 
not_wf, 
squash_wf, 
true_wf, 
bfalse_wf, 
iff_weakening_equal, 
equal-wf-base, 
btrue_neq_bfalse, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
iff_wf, 
lt_int_wf, 
iff_imp_equal_bool, 
int_seg_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
assert_of_lt_int, 
assert_wf, 
decidable__le, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
le_wf, 
eqff_to_assert, 
bnot_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
subtype_base_sq, 
bool_subtype_base, 
assert_functionality_wrt_uiff, 
or_wf, 
btrue_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
instantiate, 
universeEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
functionEquality, 
applyEquality, 
functionExtensionality, 
unionElimination, 
voidElimination, 
because_Cache, 
rename, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
independent_isectElimination, 
setElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
addLevel, 
impliesFunctionality, 
dependent_set_memberEquality, 
addEquality, 
equalityElimination, 
inlFormation, 
orFunctionality, 
allFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
inrFormation
Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  weak-continuity(\mBbbB{};\mBbbB{})
    {}\mRightarrow{}  ((\mforall{}X:Type.  (\muparrow{}(F  X)))  \mvee{}  (\mforall{}X:Type.  (\mneg{}\muparrow{}(F  X)))))
Date html generated:
2017_10_01-AM-08_29_47
Last ObjectModification:
2017_07_26-PM-04_24_09
Theory : basic
Home
Index