Nuprl Lemma : Rice-theorem-for-Type_3

F:Type ⟶ 𝔹
  ((∀X,Y:Type.  (X  Y))  weak-continuity(𝔹;𝔹 ((∀X:Type. (↑(F X))) ∨ (∀X:Type. (¬↑(F X)))))


Proof




Definitions occuring in Statement :  weak-continuity: weak-continuity(T;V) equipollent: B assert: b bool: 𝔹 all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q false: False weak-continuity: weak-continuity(T;V) decidable: Dec(P) squash: T exists: x:A. B[x] isl: isl(x) iff: ⇐⇒ Q and: P ∧ Q true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} rev_implies:  Q not: ¬A nat: le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top assert: b ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) bool: 𝔹 unit: Unit it: btrue: tt sq_type: SQType(T)
Lemmas referenced :  Rice-theorem-for-Type_2 weak-continuity_wf bool_wf all_wf equipollent_wf equal_wf nat_wf decidable_wf equal-wf-T-base isl_wf not_wf squash_wf true_wf bfalse_wf iff_weakening_equal equal-wf-base btrue_neq_bfalse int_seg_wf int_seg_subtype_nat false_wf iff_wf lt_int_wf iff_imp_equal_bool int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf less_than_wf assert_of_lt_int assert_wf decidable__le intformnot_wf intformle_wf itermConstant_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma le_wf eqff_to_assert bnot_wf iff_transitivity iff_weakening_uiff assert_of_bnot subtype_base_sq bool_subtype_base assert_functionality_wrt_uiff or_wf btrue_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination instantiate universeEquality sqequalRule lambdaEquality cumulativity functionEquality applyEquality functionExtensionality unionElimination voidElimination because_Cache rename baseClosed equalityTransitivity equalitySymmetry imageElimination productElimination dependent_pairFormation independent_pairFormation natural_numberEquality imageMemberEquality independent_isectElimination setElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll addLevel impliesFunctionality dependent_set_memberEquality addEquality equalityElimination inlFormation orFunctionality allFunctionality allLevelFunctionality impliesLevelFunctionality inrFormation

Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  weak-continuity(\mBbbB{};\mBbbB{})
    {}\mRightarrow{}  ((\mforall{}X:Type.  (\muparrow{}(F  X)))  \mvee{}  (\mforall{}X:Type.  (\mneg{}\muparrow{}(F  X)))))



Date html generated: 2017_10_01-AM-08_29_47
Last ObjectModification: 2017_07_26-PM-04_24_09

Theory : basic


Home Index