Nuprl Lemma : Rice-theorem-for-Type_2

F:Type ⟶ 𝔹((∀X,Y:Type.  (X  Y))  (∀X,Y:Type.  (F Y ∨ (∀f:ℕ ⟶ 𝔹Dec(∀n:ℕff)))))


Proof




Definitions occuring in Statement :  equipollent: B nat: bfalse: ff bool: 𝔹 decidable: Dec(P) all: x:A. B[x] implies:  Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q or: P ∨ Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} exists: x:A. B[x] and: P ∧ Q nat-inf: ℕ∞ nat: ge: i ≥  decidable: Dec(P) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q int_seg: {i..j-} lelt: i ≤ j < k squash: T nat2inf: n∞ less_than: a < b sq_type: SQType(T) assert: b ifthenelse: if then else fi  btrue: tt true: True bool: 𝔹 unit: Unit it: bfalse: ff bnot: ¬bb nat-inf-infinity:
Lemmas referenced :  Rice-theorem-for-Type_1 all_wf nat_wf bool_wf decidable_wf equal-wf-T-base exists_wf nat-inf_wf not_wf assert_wf nat2inf_wf nat-inf-infinity_wf equal_wf equipollent_wf bnot_wf b-exists_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf int_seg_subtype_nat false_wf int_seg_wf assert_of_bnot assert-b-exists decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf int_seg_properties decidable__equal_int subtract_wf int_seg_subtype itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma set_wf less_than_wf primrec-wf2 decidable__exists_int_seg decidable__equal_bool btrue_wf subtract-add-cancel iff_imp_equal_bool lt_int_wf assert_of_lt_int iff_wf subtype_base_sq bool_subtype_base true_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal assert-bnot assert_functionality_wrt_uiff bfalse_wf assert_elim btrue_neq_bfalse
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination unionElimination inlFormation isectElimination functionEquality sqequalRule lambdaEquality applyEquality functionExtensionality baseClosed inrFormation productElimination productEquality universeEquality cumulativity instantiate dependent_set_memberEquality addEquality setElimination rename because_Cache natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp addLevel impliesFunctionality equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption imageMemberEquality imageElimination impliesLevelFunctionality equalityElimination hyp_replacement

Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  (\mforall{}X,Y:Type.    (F  X  =  F  Y  \mvee{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  Dec(\mforall{}n:\mBbbN{}.  f  n  =  ff)))))



Date html generated: 2017_10_01-AM-08_29_44
Last ObjectModification: 2017_07_26-PM-04_24_07

Theory : basic


Home Index