Nuprl Lemma : Rice-theorem-for-Type_2
∀F:Type ⟶ 𝔹. ((∀X,Y:Type.  (X ~ Y 
⇒ F X = F Y)) 
⇒ (∀X,Y:Type.  (F X = F Y ∨ (∀f:ℕ ⟶ 𝔹. Dec(∀n:ℕ. f n = ff)))))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
nat: ℕ
, 
bfalse: ff
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
nat-inf: ℕ∞
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
nat2inf: n∞
, 
less_than: a < b
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bfalse: ff
, 
bnot: ¬bb
, 
nat-inf-infinity: ∞
Lemmas referenced : 
Rice-theorem-for-Type_1, 
all_wf, 
nat_wf, 
bool_wf, 
decidable_wf, 
equal-wf-T-base, 
exists_wf, 
nat-inf_wf, 
not_wf, 
assert_wf, 
nat2inf_wf, 
nat-inf-infinity_wf, 
equal_wf, 
equipollent_wf, 
bnot_wf, 
b-exists_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
int_seg_subtype_nat, 
false_wf, 
int_seg_wf, 
assert_of_bnot, 
assert-b-exists, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
int_seg_properties, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
set_wf, 
less_than_wf, 
primrec-wf2, 
decidable__exists_int_seg, 
decidable__equal_bool, 
btrue_wf, 
subtract-add-cancel, 
iff_imp_equal_bool, 
lt_int_wf, 
assert_of_lt_int, 
iff_wf, 
subtype_base_sq, 
bool_subtype_base, 
true_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
assert_functionality_wrt_uiff, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
isectElimination, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
baseClosed, 
inrFormation, 
productElimination, 
productEquality, 
universeEquality, 
cumulativity, 
instantiate, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
addLevel, 
impliesFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
imageMemberEquality, 
imageElimination, 
impliesLevelFunctionality, 
equalityElimination, 
hyp_replacement
Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  (\mforall{}X,Y:Type.    (F  X  =  F  Y  \mvee{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  Dec(\mforall{}n:\mBbbN{}.  f  n  =  ff)))))
Date html generated:
2017_10_01-AM-08_29_44
Last ObjectModification:
2017_07_26-PM-04_24_07
Theory : basic
Home
Index