Nuprl Lemma : C-comb_wf_funtype

[T:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type].
  C-comb() ∈ funtype(n;A;T) ⟶ funtype(n;λk.if (k =z 0) then if (k =z 1) then else fi ;T) supposing 2 ≤ n


Proof




Definitions occuring in Statement :  C-comb: C-comb() funtype: funtype(n;A;T) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a C-comb: C-comb() funtype: funtype(n;A;T) top: Top nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} nequal: a ≠ b ∈  int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) subtype_rel: A ⊆B subtract: m squash: T true: True
Lemmas referenced :  primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nequal-le-implies zero-add subtract_wf int_upper_properties itermSubtract_wf int_term_value_subtract_lemma int_seg_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf subtype_rel-equal decidable__equal_int add-associates minus-add minus-minus minus-one-mul add-swap add-mul-special add-commutes zero-mul add-zero primrec_wf int_seg_properties funtype_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache isect_memberEquality voidElimination voidEquality hypothesis setElimination rename natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination hypothesisEquality dependent_pairFormation int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination hypothesis_subsumption dependent_set_memberEquality applyEquality functionExtensionality functionEquality imageElimination universeEquality imageMemberEquality baseClosed axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
    C-comb()  \mmember{}  funtype(n;A;T)  {}\mrightarrow{}  funtype(n;\mlambda{}k.if  (k  =\msubz{}  0)  then  A  1
                                                                                        if  (k  =\msubz{}  1)  then  A  0
                                                                                        else  A  k
                                                                                        fi  ;T) 
    supposing  2  \mleq{}  n



Date html generated: 2018_05_21-PM-08_02_33
Last ObjectModification: 2017_07_26-PM-05_39_08

Theory : general


Home Index