Nuprl Lemma : concat-map-map-decide
∀[T:Type]. ∀[g:Top]. ∀[L:T List]. ∀[f:{x:T| (x ∈ L)}  ⟶ (Top + Top)].
  (concat(map(λx.map(λy.g[x;y];case f[x] of inl(m) => [m] | inr(x) => []);L)) ~ mapfilter(λx.g[x;outl(f[x])];
                                                                                          λx.isl(f[x]);
                                                                                          L))
Proof
Definitions occuring in Statement : 
mapfilter: mapfilter(f;P;L)
, 
l_member: (x ∈ l)
, 
concat: concat(ll)
, 
map: map(f;as)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
outl: outl(x)
, 
isl: isl(x)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
union: left + right
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
mapfilter: mapfilter(f;P;L)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
or: P ∨ Q
, 
concat: concat(ll)
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
bfalse: ff
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
l_member_wf, 
top_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
map_nil_lemma, 
filter_nil_lemma, 
reduce_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
map_cons_lemma, 
filter_cons_lemma, 
list_wf, 
nil_wf, 
subtype_rel_dep_function, 
cons_wf, 
subtype_rel_sets, 
cons_member, 
subtype_rel_self, 
set_wf, 
reduce_cons_lemma, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
true_wf, 
false_wf, 
not_wf, 
isl_wf, 
bool_wf, 
assert_wf, 
bnot_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
setEquality, 
cumulativity, 
unionEquality, 
applyEquality, 
because_Cache, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality, 
addEquality, 
baseClosed, 
instantiate, 
imageElimination, 
universeEquality, 
inrFormation, 
functionExtensionality, 
inlFormation, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[g:Top].  \mforall{}[L:T  List].  \mforall{}[f:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  (Top  +  Top)].
    (concat(map(\mlambda{}x.map(\mlambda{}y.g[x;y];case  f[x]  of  inl(m)  =>  [m]  |  inr(x)  =>  []);L)) 
    \msim{}  mapfilter(\mlambda{}x.g[x;outl(f[x])];\mlambda{}x.isl(f[x]);L))
Date html generated:
2018_05_21-PM-07_35_48
Last ObjectModification:
2017_07_26-PM-05_09_54
Theory : general
Home
Index