Nuprl Lemma : residue-mul-inverse

n:{2...}. ∀a:ℕ.
  (CoPrime(n,a)
   (∃b:ℤ
       (CoPrime(n,b)
       ∧ (∀i:residue(n)
            ((((ba mod n) 1 ∈ residue(n)) ∧ ((ab mod n) 1 ∈ residue(n)))
            ∧ ((b(ai mod n) mod n) i ∈ residue(n))
            ∧ ((a(bi mod n) mod n) i ∈ residue(n)))))))


Proof




Definitions occuring in Statement :  residue-mul: (ai mod n) residue: residue(n) coprime: CoPrime(a,b) int_upper: {i...} nat: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T residue: residue(n) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A uall: [x:A]. B[x] nat: guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) cand: c∧ B residue-mul: (ai mod n) iff: ⇐⇒ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o nequal: a ≠ b ∈  modulus: mod n sq_type: SQType(T) nat_plus: + rev_implies:  Q uiff: uiff(P;Q) true: True eqmod: a ≡ mod m divides: a squash: T sq_stable: SqStable(P)
Lemmas referenced :  istype-false nat_properties int_upper_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf le_wf less_than_wf one_divs_any divides_wf coprime_wf nat_wf int_upper_wf coprime_bezout_id mul-commutes set_subtype_base int_subtype_base modulus_wf subtype_rel_sets nequal_wf intformeq_wf int_formula_prop_eq_lemma one-rem subtype_base_sq modulus-equal-iff-eqmod not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel decidable__equal_int itermSubtract_wf itermMultiply_wf itermMinus_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_mul_lemma int_term_value_minus_lemma int_term_value_add_lemma modulus_base subtract_wf residue-mul-assoc less_than_transitivity2 one-mul mod_bounds_1 mod_bounds equal_wf squash_wf true_wf istype-universe residue_wf upper_subtype_nat subtype_rel_self iff_weakening_equal residue-mul_wf sq_stable__coprime int_seg_wf lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation sqequalRule hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination universeIsType productIsType because_Cache productElimination equalityIsType4 inhabitedIsType baseApply closedConclusion baseClosed applyEquality intEquality equalityTransitivity equalitySymmetry multiplyEquality setIsType instantiate cumulativity minusEquality promote_hyp imageElimination universeEquality imageMemberEquality functionIsType equalityIsType1

Latex:
\mforall{}n:\{2...\}.  \mforall{}a:\mBbbN{}.
    (CoPrime(n,a)
    {}\mRightarrow{}  (\mexists{}b:\mBbbZ{}
              (CoPrime(n,b)
              \mwedge{}  (\mforall{}i:residue(n)
                        ((((ba  mod  n)  =  1)  \mwedge{}  ((ab  mod  n)  =  1))
                        \mwedge{}  ((b(ai  mod  n)  mod  n)  =  i)
                        \mwedge{}  ((a(bi  mod  n)  mod  n)  =  i))))))



Date html generated: 2019_10_15-AM-11_34_26
Last ObjectModification: 2018_10_11-PM-11_14_04

Theory : general


Home Index