Nuprl Lemma : cal-filter_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:fset(T) ⟶ 𝔹]. ∀[s:Point(constrained-antichain-lattice(T;eq;P))]. ∀[Q:{x:fset(T)| 
                                                                                                          ↑P[x]}  ⟶ 𝔹].
  (cal-filter(s;x.Q[x]) ∈ Point(constrained-antichain-lattice(T;eq;P)))
Proof
Definitions occuring in Statement : 
cal-filter: cal-filter(s;x.P[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
cal-filter: cal-filter(s;x.P[x])
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
istype: istype(T)
, 
not: ¬A
, 
false: False
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
sq_type: SQType(T)
, 
cand: A c∧ B
Lemmas referenced : 
cal-point, 
istype-void, 
istype-assert, 
bool_wf, 
fset_wf, 
fset-antichain_wf, 
fset-all_wf, 
deq_wf, 
istype-universe, 
set_wf, 
subtype_rel_self, 
assert_wf, 
fset-subtype2, 
deq-fset_wf, 
fset-member_wf, 
fset-filter_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
fset-subtype, 
fset-all-iff, 
assert-fset-antichain, 
iff_weakening_uiff, 
equal_wf, 
f-proper-subset_wf, 
not_wf, 
isect_wf, 
all_wf, 
member-fset-filter2, 
subtype_rel_sets_simple, 
assert_witness, 
bool_subtype_base, 
subtype_base_sq, 
assert_elim, 
strong-subtype-set2, 
strong-subtype-deq-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
because_Cache, 
setElimination, 
rename, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
setIsType, 
hypothesisEquality, 
universeIsType, 
isectIsTypeImplies, 
inhabitedIsType, 
productIsType, 
lambdaEquality_alt, 
instantiate, 
universeEquality, 
lambdaEquality, 
functionExtensionality, 
productElimination, 
cumulativity, 
setEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
equalityIsType1, 
hyp_replacement, 
applyLambdaEquality, 
functionIsTypeImplies, 
productEquality, 
isect_memberEquality, 
natural_numberEquality, 
isect_memberFormation, 
independent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:fset(T)  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:Point(constrained-antichain-lattice(T;eq;P))].
\mforall{}[Q:\{x:fset(T)|  \muparrow{}P[x]\}    {}\mrightarrow{}  \mBbbB{}].
    (cal-filter(s;x.Q[x])  \mmember{}  Point(constrained-antichain-lattice(T;eq;P)))
Date html generated:
2020_05_20-AM-08_48_03
Last ObjectModification:
2018_11_10-PM-00_29_52
Theory : lattices
Home
Index