Nuprl Lemma : first_index_cons
∀[T:Type]. ∀[L:T List]. ∀[a:T]. ∀[P:T ⟶ 𝔹].
  (index-of-first x in [a / L].P[x] ~ if P[a] then 1
  if 0 <z index-of-first x in L.P[x] then index-of-first x in L.P[x] + 1
  else 0
  fi )
Proof
Definitions occuring in Statement : 
first_index: index-of-first x in L.P[x]
, 
cons: [a / b]
, 
list: T List
, 
ifthenelse: if b then t else f fi 
, 
lt_int: i <z j
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
first_index: index-of-first x in L.P[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
select: L[n]
, 
cons: [a / b]
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
less_than': less_than'(a;b)
, 
subtract: n - m
Lemmas referenced : 
subtype_base_sq, 
int_seg_wf, 
length_wf, 
cons_wf, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
length_of_cons_lemma, 
bool_wf, 
list_wf, 
search_succ, 
length_wf_nat, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
non_neg_length, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
select-cons-tl, 
add-subtract-cancel, 
search_wf, 
equal_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
false_wf, 
lt_int_wf, 
less_than_wf, 
add-member-int_seg2, 
int_seg_subtype, 
subtract_wf, 
add-is-int-iff, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_int_wf, 
le_wf, 
assert_of_lt_int, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
natural_numberEquality, 
addEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
lambdaFormation, 
equalityElimination, 
dependent_set_memberEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[a:T].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    (index-of-first  x  in  [a  /  L].P[x]  \msim{}  if  P[a]  then  1
    if  0  <z  index-of-first  x  in  L.P[x]  then  index-of-first  x  in  L.P[x]  +  1
    else  0
    fi  )
Date html generated:
2017_10_01-AM-08_38_45
Last ObjectModification:
2017_07_26-PM-04_27_11
Theory : list!
Home
Index