Nuprl Lemma : q-min-exists

as:ℚ List. ∃a:ℚ((a ∈ as) supposing ¬↑null(as) ∧ (∀a'∈as.a ≤ a'))


Proof




Definitions occuring in Statement :  qle: r ≤ s rationals: l_all: (∀x∈L.P[x]) l_member: (x ∈ l) null: null(as) list: List assert: b uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt cons: [a b] top: Top bfalse: ff exists: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B uimplies: supposing a not: ¬A implies:  Q false: False prop: true: True so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  decidable: Dec(P) le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) iff: ⇐⇒ Q guard: {T} nat: rev_implies:  Q uiff: uiff(P;Q) subtract: m less_than': less_than'(a;b)
Lemmas referenced :  rationals_wf list-cases null_nil_lemma product_subtype_list null_cons_lemma list_wf int-subtype-rationals true_wf not_wf l_all_nil l_member_wf nil_wf l_all_wf2 qle_wf subtype_rel_set qmin-list_wf cons_wf length_of_cons_lemma non_neg_length decidable__lt length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf false_wf qmin-list-member qmin-list-bounds length_of_nil_lemma nil_member btrue_wf and_wf equal_wf null_wf3 subtype_rel_list top_wf member-implies-null-eq-bfalse btrue_neq_bfalse length_wf_nat nat_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel cons_neq_nil qle_reflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality unionElimination sqequalRule promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation natural_numberEquality applyEquality isect_memberFormation lambdaEquality rename independent_functionElimination independent_pairFormation productEquality isectEquality functionExtensionality independent_isectElimination setEquality addEquality int_eqEquality intEquality computeAll because_Cache setElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality applyLambdaEquality minusEquality

Latex:
\mforall{}as:\mBbbQ{}  List.  \mexists{}a:\mBbbQ{}.  ((a  \mmember{}  as)  supposing  \mneg{}\muparrow{}null(as)  \mwedge{}  (\mforall{}a'\mmember{}as.a  \mleq{}  a'))



Date html generated: 2018_05_22-AM-00_17_07
Last ObjectModification: 2017_07_26-PM-06_53_11

Theory : rationals


Home Index