Nuprl Lemma : q-min-exists
∀as:ℚ List. ∃a:ℚ. ((a ∈ as) supposing ¬↑null(as) ∧ (∀a'∈as.a ≤ a'))
Proof
Definitions occuring in Statement : 
qle: r ≤ s
, 
rationals: ℚ
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
nat: ℕ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
Lemmas referenced : 
rationals_wf, 
list-cases, 
null_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
list_wf, 
int-subtype-rationals, 
true_wf, 
not_wf, 
l_all_nil, 
l_member_wf, 
nil_wf, 
l_all_wf2, 
qle_wf, 
subtype_rel_set, 
qmin-list_wf, 
cons_wf, 
length_of_cons_lemma, 
non_neg_length, 
decidable__lt, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
false_wf, 
qmin-list-member, 
qmin-list-bounds, 
length_of_nil_lemma, 
nil_member, 
btrue_wf, 
and_wf, 
equal_wf, 
null_wf3, 
subtype_rel_list, 
top_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
length_wf_nat, 
nat_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
cons_neq_nil, 
qle_reflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
sqequalRule, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
natural_numberEquality, 
applyEquality, 
isect_memberFormation, 
lambdaEquality, 
rename, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
isectEquality, 
functionExtensionality, 
independent_isectElimination, 
setEquality, 
addEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
because_Cache, 
setElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
applyLambdaEquality, 
minusEquality
Latex:
\mforall{}as:\mBbbQ{}  List.  \mexists{}a:\mBbbQ{}.  ((a  \mmember{}  as)  supposing  \mneg{}\muparrow{}null(as)  \mwedge{}  (\mforall{}a'\mmember{}as.a  \mleq{}  a'))
Date html generated:
2018_05_22-AM-00_17_07
Last ObjectModification:
2017_07_26-PM-06_53_11
Theory : rationals
Home
Index