Nuprl Lemma : rat-complex-boundary-iter-subdiv
∀k,n,j:ℕ. ∀K:n-dim-complex.  permutation(ℚCube(k);∂(K'^(j));∂(K)'^(j))
Proof
Definitions occuring in Statement : 
rat-complex-iter-subdiv: K'^(n)
, 
rat-complex-boundary: ∂(K)
, 
rational-cube-complex: n-dim-complex
, 
rational-cube: ℚCube(k)
, 
permutation: permutation(T;L1;L2)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
rat-complex-iter-subdiv: K'^(n)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rat-complex-subdiv: (K)'
, 
concat: concat(ll)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
map: map(f;as)
, 
nil: []
, 
subtype_rel: A ⊆r B
, 
rational-cube-complex: n-dim-complex
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
cand: A c∧ B
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
istype-nat, 
rat-complex-boundary-0-dim, 
rat-complex-iter-subdiv_wf, 
istype-void, 
istype-le, 
rational-cube-complex_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
subtract-1-ge-0, 
primrec0_lemma, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
permutation-nil, 
rational-cube_wf, 
permutation_weakening, 
rat-complex-boundary_wf, 
permutation_wf, 
subtract_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
primrec-wf2, 
rat-complex-boundary-subdiv, 
rat-complex-subdiv_wf, 
permutation_transitivity, 
permutation-when-no_repeats, 
sq_stable__no_repeats, 
member-permutation, 
l_member_wf, 
istype-assert, 
is-half-cube_wf, 
member-rat-complex-subdiv2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
inhabitedIsType, 
sqequalRule, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
universeIsType, 
intWeakElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
axiomSqEquality, 
functionIsTypeImplies, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIstype, 
promote_hyp, 
applyEquality, 
functionIsType, 
setIsType, 
functionEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productIsType
Latex:
\mforall{}k,n,j:\mBbbN{}.  \mforall{}K:n-dim-complex.    permutation(\mBbbQ{}Cube(k);\mpartial{}(K'\^{}(j));\mpartial{}(K)'\^{}(j))
Date html generated:
2020_05_20-AM-09_24_25
Last ObjectModification:
2019_11_02-PM-10_35_18
Theory : rationals
Home
Index