Nuprl Lemma : rat-complex-boundary-iter-subdiv

k,n,j:ℕ. ∀K:n-dim-complex.  permutation(ℚCube(k);∂(K'^(j));∂(K)'^(j))


Proof




Definitions occuring in Statement :  rat-complex-iter-subdiv: K'^(n) rat-complex-boundary: (K) rational-cube-complex: n-dim-complex rational-cube: Cube(k) permutation: permutation(T;L1;L2) nat: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False rat-complex-iter-subdiv: K'^(n) ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q rat-complex-subdiv: (K)' concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) nil: [] subtype_rel: A ⊆B rational-cube-complex: n-dim-complex so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) squash: T cand: c∧ B
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base istype-nat rat-complex-boundary-0-dim rat-complex-iter-subdiv_wf istype-void istype-le rational-cube-complex_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 primrec0_lemma primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf permutation-nil rational-cube_wf permutation_weakening rat-complex-boundary_wf permutation_wf subtract_wf decidable__le intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma intformeq_wf int_formula_prop_eq_lemma primrec-wf2 rat-complex-boundary-subdiv rat-complex-subdiv_wf permutation_transitivity permutation-when-no_repeats sq_stable__no_repeats member-permutation l_member_wf istype-assert is-half-cube_wf member-rat-complex-subdiv2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination inhabitedIsType sqequalRule dependent_set_memberEquality_alt independent_pairFormation voidElimination universeIsType intWeakElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt axiomSqEquality functionIsTypeImplies equalityElimination equalityTransitivity equalitySymmetry productElimination equalityIstype promote_hyp applyEquality functionIsType setIsType functionEquality imageMemberEquality baseClosed imageElimination productIsType

Latex:
\mforall{}k,n,j:\mBbbN{}.  \mforall{}K:n-dim-complex.    permutation(\mBbbQ{}Cube(k);\mpartial{}(K'\^{}(j));\mpartial{}(K)'\^{}(j))



Date html generated: 2020_05_20-AM-09_24_25
Last ObjectModification: 2019_11_02-PM-10_35_18

Theory : rationals


Home Index