Nuprl Lemma : rat-complex-boundary-subdiv

k,n:ℕ. ∀K:n-dim-complex.  permutation(ℚCube(k);∂((K)');(∂(K))')


Proof




Definitions occuring in Statement :  rat-complex-subdiv: (K)' rat-complex-boundary: (K) rational-cube-complex: n-dim-complex rational-cube: Cube(k) permutation: permutation(T;L1;L2) nat: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: rat-complex-subdiv: (K)' concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) nil: [] it: uiff: uiff(P;Q) cand: c∧ B assert: b ifthenelse: if then else fi  btrue: tt true: True int_seg: {i..j-} iff: ⇐⇒ Q rational-cube-complex: n-dim-complex rev_implies:  Q in-complex-boundary: in-complex-boundary(k;f;K) isOdd: isOdd(n) eq_int: (i =z j) modulus: mod n remainder: rem m length: ||as|| bfalse: ff cons: [a b] squash: T l_member: (x ∈ l) select: L[n] nat_plus: + rat-cube-dimension: dim(c) exists!: !x:T. P[x] sq_stable: SqStable(P) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] has-interior-point: has-interior-point(k;c;a) rat-point-in-cube: rat-point-in-cube(k;x;c) rat-point-in-cube-interior: rat-point-in-cube-interior(k;x;a) rev_uimplies: rev_uimplies(P;Q) compatible-rat-cubes: Compatible(c;d) set-equal: set-equal(T;x;y) l_all: (∀x∈L.P[x]) lelt: i ≤ j < k
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base rational-cube-complex_wf istype-nat rat-complex-subdiv_wf istype-void istype-le set_subtype_base nat_properties full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma subtype_rel_self nat_wf le_wf permutation-nil rational-cube_wf rat-complex-boundary-0-dim equal-rat-cube-complexes subtract_wf itermSubtract_wf int_term_value_subtract_lemma rat-complex-boundary_wf assert_elim inhabited-rat-cube_wf bool_wf bool_subtype_base istype-assert rat-cube-dimension_wf lelt_wf in-complex-boundary_wf is-half-cube_wf l_member_wf member-rat-complex-boundary-n member-rat-complex-subdiv2 filter_wf5 is-rat-cube-face_wf list-cases product_subtype_list length_of_cons_lemma squash_wf true_wf list_wf istype-universe iff_weakening_equal add_nat_plus length_wf_nat decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than nat_plus_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf length_wf select_wf member_filter iff_weakening_uiff assert_wf rat-cube-face_wf assert-is-rat-cube-face isOdd_wf l_all_iff equal-wf-base equal_wf bool_cases eqtt_to_assert eqff_to_assert assert_of_bnot half-cube-dimension extend-half-cube-face inhabited-rat-cube-face no_repeats_filter sq_stable__no_repeats no_repeats-length-equal-by-relation l_all_wf2 l_exists_wf same-half-cube-of-compatible sq_stable__compatible-rat-cubes pairwise-iff compatible-rat-cubes_wf compatible-rat-cubes-symm compatible-rat-cubes-refl has-interior-point-implies l_exists_iff face-of-half-cube half-cube-of-face assert_functionality_wrt_uiff decidable__equal_rc rat-point-in-face rat-point-in-half-cube int_seg_wf rat-point-in-intersection inhabited-rat-cube-iff-point rat-cube-intersection_wf rat-point-in-cube_wf rat-point-in-cube-interior-not-in-face rat-cube-face-dimension-equal set-equal-no_repeats-length cons_wf nil_wf no_repeats_cons no_repeats_singleton member_singleton cons_member length_of_nil_lemma l_exists_filter l_all_filter_iff sq_stable__all sq_stable__assert assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination universeIsType inhabitedIsType dependent_set_memberEquality_alt independent_pairFormation sqequalRule voidElimination applyEquality equalityTransitivity equalitySymmetry approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt productElimination setIsType productIsType equalityIstype minusEquality addEquality baseApply closedConclusion baseClosed sqequalBase promote_hyp hypothesis_subsumption imageElimination universeEquality imageMemberEquality applyLambdaEquality pointwiseFunctionality hyp_replacement functionIsType productEquality unionIsType inlFormation_alt inrFormation_alt functionIsTypeImplies

Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.    permutation(\mBbbQ{}Cube(k);\mpartial{}((K)');(\mpartial{}(K))')



Date html generated: 2020_05_20-AM-09_24_03
Last ObjectModification: 2019_11_02-PM-07_28_27

Theory : rationals


Home Index