Nuprl Lemma : same-half-cube-of-compatible

k:ℕ. ∀a,b,c:ℚCube(k).
  ((↑Inhabited(c))  (↑is-half-cube(k;c;a))  (↑is-half-cube(k;c;b))  Compatible(a;b)  (a b ∈ ℚCube(k)))


Proof




Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) inhabited-rat-cube: Inhabited(c) is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: assert: b all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  cand: c∧ B ifthenelse: if then else fi  band: p ∧b q bfalse: ff sq_type: SQType(T) subtype_rel: A ⊆B or: P ∨ Q rat-point-interval: [a] rev_implies:  Q pi2: snd(t) pi1: fst(t) iff: ⇐⇒ Q is-half-interval: is-half-interval(I;J) rat-interval-face: I ≤ J inhabited-rat-interval: Inhabited(I) rat-interval-intersection: I ⋂ J rational-interval: Interval rev_uimplies: rev_uimplies(P;Q) guard: {T} true: True squash: T prop: nat: rational-cube: Cube(k) rat-cube-face: c ≤ d rat-cube-intersection: c ⋂ d uimplies: supposing a uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q compatible-rat-cubes: Compatible(c;d) implies:  Q all: x:A. B[x]
Lemmas referenced :  qle_connex qavg-eq-iff-6 qavg-eq-iff-4 qle-qavg-iff-4 qavg-eq-iff-8 uiff_transitivity uiff_transitivity3 qavg-same istype-universe qavg-eq-iff-3 qavg-qle-iff-2 qavg-eq-iff-1 qavg-qle-iff-1 qavg-eq-iff-2 qle_antisymmetry member_wf qle-qavg-iff-1 qavg-eq-iff-7 qmin-eq-iff-2 qmax-eq-iff-2 qmin-eq-iff-1 qmax-eq-iff-1 assert_of_band assert_of_bor iff_transitivity iff_weakening_equal assert-q_le-eq q_le_wf bfalse_wf assert-qeq btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qeq_wf2 bor_wf assert_wf subtype_rel_self rational-interval_wf qavg_wf qmax-eq-iff qmax_wf qmin-eq-iff qle_wf qmin_wf rationals_wf equal_wf iff_weakening_uiff inhabited-intersection-half-cubes rat-cube-intersection-idemp true_wf squash_wf rat-cube-intersection_wf assert_functionality_wrt_uiff istype-nat rational-cube_wf inhabited-rat-cube_wf is-half-cube_wf istype-assert compatible-rat-cubes_wf int_seg_wf assert-inhabited-rat-cube assert-is-half-cube
Rules used in proof :  universeEquality hyp_replacement isect_memberEquality_alt unionEquality cumulativity instantiate inrFormation_alt functionIsType unionIsType functionEquality productEquality promote_hyp inlFormation_alt unionElimination independent_pairEquality applyLambdaEquality productIsType dependent_set_memberEquality_alt independent_pairFormation equalityIstype baseClosed imageMemberEquality equalitySymmetry equalityTransitivity imageElimination lambdaEquality_alt applyEquality inhabitedIsType universeIsType setElimination natural_numberEquality dependent_functionElimination rename functionExtensionality sqequalRule hypothesisEquality independent_isectElimination hypothesis because_Cache isectElimination extract_by_obid introduction productElimination thin independent_functionElimination sqequalHypSubstitution cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c:\mBbbQ{}Cube(k).
    ((\muparrow{}Inhabited(c))
    {}\mRightarrow{}  (\muparrow{}is-half-cube(k;c;a))
    {}\mRightarrow{}  (\muparrow{}is-half-cube(k;c;b))
    {}\mRightarrow{}  Compatible(a;b)
    {}\mRightarrow{}  (a  =  b))



Date html generated: 2019_10_29-AM-07_55_06
Last ObjectModification: 2019_10_22-PM-04_38_17

Theory : rationals


Home Index