Nuprl Lemma : inhabited-intersection-half-cubes

k:ℕ. ∀a,b,c,d:ℚCube(k).
  ((↑is-half-cube(k;c;a))  (↑is-half-cube(k;d;b))  (↑Inhabited(c ⋂ d))  (↑Inhabited(a ⋂ b)))


Proof




Definitions occuring in Statement :  inhabited-rat-cube: Inhabited(c) rat-cube-intersection: c ⋂ d is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k) nat: assert: b all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  squash: T qge: a ≥ b true: True lt_int: i <j qmul: s qadd: s qsub: s qpositive: qpositive(r) bor: p ∨bq q_le: q_le(r;s) qadd_grp: <ℚ+> pi2: snd(t) pi1: fst(t) grp_le: b infix_ap: y grp_leq: a ≤ b qle: r ≤ s false: False assert: b eq_int: (i =z j) btrue: tt evalall: evalall(t) callbyvalueall: callbyvalueall qeq: qeq(r;s) not: ¬A subtype_rel: A ⊆B qavg: qavg(a;b) ifthenelse: if then else fi  band: p ∧b q bfalse: ff sq_type: SQType(T) rev_implies:  Q or: P ∨ Q guard: {T} is-half-interval: is-half-interval(I;J) inhabited-rat-interval: Inhabited(I) rat-interval-intersection: I ⋂ J rational-interval: Interval cand: c∧ B rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q prop: rational-cube: Cube(k) nat: rat-cube-intersection: c ⋂ d uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  qadd_inv_assoc_q mon_ident_q qinverse_q qadd_ac_1_q qadd_comm_q qadd_preserves_qle subtype_rel_self qmul-qdiv-cancel true_wf squash_wf qle_weakening_eq_qorder qle_functionality_wrt_implies int-subtype-rationals qmul_wf qle_witness qadd_wf qdiv_wf qmul_preserves_qle2 qavg-qle-iff-1 qle-qavg-iff-1 assert_of_band assert_of_bor iff_transitivity iff_weakening_equal assert-q_le-eq q_le_wf rationals_wf equal_wf bfalse_wf assert-qeq btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qeq_wf2 bor_wf qmax_lb qmax_wf qmin_ub qmin_wf qle_wf qavg_wf istype-nat rational-cube_wf assert-is-half-cube is-half-cube_wf assert_wf iff_weakening_uiff is-half-interval_wf int_seg_wf inhabited-rat-cube_wf istype-assert rat-cube-intersection_wf assert-inhabited-rat-cube
Rules used in proof :  minusEquality universeEquality imageMemberEquality imageElimination lambdaEquality_alt isect_memberFormation_alt sqequalBase baseClosed voidElimination applyLambdaEquality hyp_replacement inrFormation_alt inlFormation_alt isect_memberEquality_alt unionEquality cumulativity instantiate unionElimination promote_hyp productEquality unionIsType productIsType equalitySymmetry equalityTransitivity equalityIstype inhabitedIsType independent_pairFormation dependent_functionElimination functionEquality independent_functionElimination applyEquality rename setElimination natural_numberEquality universeIsType functionIsType sqequalRule independent_isectElimination productElimination hypothesis hypothesisEquality because_Cache thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbQ{}Cube(k).
    ((\muparrow{}is-half-cube(k;c;a))  {}\mRightarrow{}  (\muparrow{}is-half-cube(k;d;b))  {}\mRightarrow{}  (\muparrow{}Inhabited(c  \mcap{}  d))  {}\mRightarrow{}  (\muparrow{}Inhabited(a  \mcap{}  b)))



Date html generated: 2019_10_29-AM-07_54_51
Last ObjectModification: 2019_10_22-PM-04_05_02

Theory : rationals


Home Index