Nuprl Lemma : member-rat-complex-boundary-n
∀n,k:ℕ. ∀K:n-dim-complex. ∀f:ℚCube(k).  ((f ∈ ∂(K)) ⇐⇒ (↑in-complex-boundary(k;f;K)) ∧ (dim(f) = (n - 1) ∈ ℤ))
Proof
Definitions occuring in Statement : 
rat-complex-boundary: ∂(K), 
in-complex-boundary: in-complex-boundary(k;f;K), 
rational-cube-complex: n-dim-complex, 
rat-cube-dimension: dim(c), 
rational-cube: ℚCube(k), 
l_member: (x ∈ l), 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
subtract: n - m, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
sq_type: SQType(T), 
rat-cube-dimension: dim(c), 
nat_plus: ℕ+, 
cand: A c∧ B, 
select: L[n], 
less_than': less_than'(a;b), 
le: A ≤ B, 
l_member: (x ∈ l), 
assert: ↑b, 
remainder: n rem m, 
modulus: a mod n, 
eq_int: (i =z j), 
isOdd: isOdd(n), 
cons: [a / b], 
in-complex-boundary: in-complex-boundary(k;f;K), 
top: Top, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
guard: {T}, 
true: True, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
rat-cube-sub-complex: rat-cube-sub-complex(P;L), 
rat-complex-boundary: ∂(K), 
bfalse: ff, 
so_apply: x[s], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
face-complex: face-complex(k;L), 
rational-cube-complex: n-dim-complex, 
all: ∀x:A. B[x]
Lemmas referenced : 
assert_of_bnot, 
eqff_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
assert-is-rat-cube-face, 
isOdd_wf, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
select_wf, 
length_wf, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
add-is-int-iff, 
nat_plus_properties, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
length_wf_nat, 
add_nat_plus, 
istype-le, 
length_of_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
list-cases, 
is-rat-cube-face_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
nat_properties, 
iff_weakening_equal, 
subtype_rel_self, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
l_all_iff, 
istype-nat, 
rational-cube-complex_wf, 
filter_wf5, 
member_filter, 
member-face-complex, 
member-rat-cube-faces, 
le_wf, 
istype-assert, 
l_member_wf, 
in-complex-boundary_wf, 
assert_witness, 
nil_wf, 
subtract_wf, 
int_subtype_base, 
istype-int, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
equal-wf-base, 
rat-cube-face_wf, 
subtype_rel_list, 
rat-cube-faces_wf, 
eqtt_to_assert, 
inhabited-rat-cube_wf, 
list_wf, 
map_wf, 
concat_wf, 
rc-deq_wf, 
rational-cube_wf, 
remove-repeats_wf
Rules used in proof : 
cumulativity, 
pointwiseFunctionality, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
hypothesis_subsumption, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
approximateComputation, 
imageMemberEquality, 
universeEquality, 
instantiate, 
imageElimination, 
promote_hyp, 
dependent_pairFormation_alt, 
baseClosed, 
closedConclusion, 
baseApply, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalBase, 
equalityIstype, 
universeIsType, 
productIsType, 
setIsType, 
equalitySymmetry, 
equalityTransitivity, 
addEquality, 
natural_numberEquality, 
minusEquality, 
intEquality, 
productEquality, 
setEquality, 
applyEquality, 
independent_isectElimination, 
productElimination, 
equalityElimination, 
unionElimination, 
inhabitedIsType, 
lambdaEquality_alt, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
sqequalRule, 
cut, 
rename, 
thin, 
setElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}n,k:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}f:\mBbbQ{}Cube(k).
    ((f  \mmember{}  \mpartial{}(K))  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}in-complex-boundary(k;f;K))  \mwedge{}  (dim(f)  =  (n  -  1)))
Date html generated:
2019_10_29-AM-07_58_54
Last ObjectModification:
2019_10_21-AM-10_23_00
Theory : rationals
Home
Index