Nuprl Lemma : member-rat-complex-boundary-n

n,k:ℕ. ∀K:n-dim-complex. ∀f:ℚCube(k).  ((f ∈ ∂(K)) ⇐⇒ (↑in-complex-boundary(k;f;K)) ∧ (dim(f) (n 1) ∈ ℤ))


Proof




Definitions occuring in Statement :  rat-complex-boundary: (K) in-complex-boundary: in-complex-boundary(k;f;K) rational-cube-complex: n-dim-complex rat-cube-dimension: dim(c) rational-cube: Cube(k) l_member: (x ∈ l) nat: assert: b all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q subtract: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  sq_type: SQType(T) rat-cube-dimension: dim(c) nat_plus: + cand: c∧ B select: L[n] less_than': less_than'(a;b) le: A ≤ B l_member: (x ∈ l) assert: b remainder: rem m modulus: mod n eq_int: (i =z j) isOdd: isOdd(n) cons: [a b] in-complex-boundary: in-complex-boundary(k;f;K) top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  guard: {T} true: True squash: T rev_implies:  Q exists: x:A. B[x] iff: ⇐⇒ Q rat-cube-sub-complex: rat-cube-sub-complex(P;L) rat-complex-boundary: (K) bfalse: ff so_apply: x[s] nat: so_lambda: λ2x.t[x] int_seg: {i..j-} prop: subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q uall: [x:A]. B[x] member: t ∈ T face-complex: face-complex(k;L) rational-cube-complex: n-dim-complex all: x:A. B[x]
Lemmas referenced :  assert_of_bnot eqff_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases assert-is-rat-cube-face isOdd_wf int_formula_prop_le_lemma intformle_wf decidable__le select_wf length_wf false_wf int_term_value_add_lemma itermAdd_wf add-is-int-iff nat_plus_properties istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt length_wf_nat add_nat_plus istype-le length_of_cons_lemma product_subtype_list length_of_nil_lemma list-cases is-rat-cube-face_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int nat_properties iff_weakening_equal subtype_rel_self istype-universe true_wf squash_wf equal_wf l_all_iff istype-nat rational-cube-complex_wf filter_wf5 member_filter member-face-complex member-rat-cube-faces le_wf istype-assert l_member_wf in-complex-boundary_wf assert_witness nil_wf subtract_wf int_subtype_base istype-int lelt_wf set_subtype_base rat-cube-dimension_wf equal-wf-base rat-cube-face_wf subtype_rel_list rat-cube-faces_wf eqtt_to_assert inhabited-rat-cube_wf list_wf map_wf concat_wf rc-deq_wf rational-cube_wf remove-repeats_wf
Rules used in proof :  cumulativity pointwiseFunctionality applyLambdaEquality dependent_set_memberEquality_alt hypothesis_subsumption voidElimination isect_memberEquality_alt int_eqEquality approximateComputation imageMemberEquality universeEquality instantiate imageElimination promote_hyp dependent_pairFormation_alt baseClosed closedConclusion baseApply independent_pairFormation independent_functionElimination dependent_functionElimination sqequalBase equalityIstype universeIsType productIsType setIsType equalitySymmetry equalityTransitivity addEquality natural_numberEquality minusEquality intEquality productEquality setEquality applyEquality independent_isectElimination productElimination equalityElimination unionElimination inhabitedIsType lambdaEquality_alt because_Cache hypothesis hypothesisEquality isectElimination extract_by_obid introduction sqequalRule cut rename thin setElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}n,k:\mBbbN{}.  \mforall{}K:n-dim-complex.  \mforall{}f:\mBbbQ{}Cube(k).
    ((f  \mmember{}  \mpartial{}(K))  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}in-complex-boundary(k;f;K))  \mwedge{}  (dim(f)  =  (n  -  1)))



Date html generated: 2019_10_29-AM-07_58_54
Last ObjectModification: 2019_10_21-AM-10_23_00

Theory : rationals


Home Index