Nuprl Lemma : bpa-norm_wf_padic

[p:ℕ+]. ∀[x:basic-padic(p)].  (bpa-norm(p;x) ∈ padic(p))


Proof




Definitions occuring in Statement :  padic: padic(p) bpa-norm: bpa-norm(p;x) basic-padic: basic-padic(p) nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T basic-padic: basic-padic(p) nat_plus: + padic: padic(p) all: x:A. B[x] implies:  Q nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} bpa-norm: bpa-norm(p;x) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) pi1: fst(t) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top p-adics: p-adics(p) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True int_seg: {i..j-} nequal: a ≠ b ∈  lelt: i ≤ j < k p-units: p-units(p) less_than: a < b squash: T
Lemmas referenced :  basic-padic_wf nat_plus_wf bpa-norm_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat false_wf nat_properties nequal-le-implies zero-add le_wf ifthenelse_wf p-adics_wf p-units_wf pi2_wf nat_wf pi1_wf int_upper_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermConstant_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf int_seg_wf exp_wf2 p-unitize_wf p-mul_wf p-int_wf subtract_wf int_seg_properties decidable__le intformnot_wf itermSubtract_wf intformless_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_less_lemma int_term_value_add_lemma equal-wf-T-base not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution productElimination thin rename hypothesis introduction extract_by_obid isectElimination setElimination hypothesisEquality dependent_functionElimination sqequalRule independent_pairEquality lambdaFormation dependent_pairEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache dependent_pairFormation promote_hyp instantiate independent_functionElimination voidElimination hypothesis_subsumption independent_pairFormation dependent_set_memberEquality universeEquality applyLambdaEquality lambdaEquality approximateComputation int_eqEquality intEquality isect_memberEquality voidEquality cumulativity applyEquality productEquality addEquality setEquality imageMemberEquality baseClosed

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:basic-padic(p)].    (bpa-norm(p;x)  \mmember{}  padic(p))



Date html generated: 2018_05_21-PM-03_26_07
Last ObjectModification: 2018_05_19-AM-08_23_30

Theory : rings_1


Home Index