Nuprl Lemma : nth_tl_factor
∀T:Type. ∀n:ℕ. ∀as:T List.  ((n ≤ ||as||) 
⇒ (nth_tl(n;as) = (Π n ≤ i < ||as||. [as[i]]) ∈ (T List)))
Proof
Definitions occuring in Statement : 
lapp_imon: <T List,@>
, 
select: L[n]
, 
length: ||as||
, 
nth_tl: nth_tl(n;as)
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
nat: ℕ
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
mon_itop: Π lb ≤ i < ub. E[i]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
nth_tl: nth_tl(n;as)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
prop: ℙ
, 
bfalse: ff
, 
guard: {T}
, 
subtract: n - m
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
subtype_rel: A ⊆r B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_apply: x[s]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
imon: IMonoid
, 
list: T List
, 
grp_car: |g|
, 
pi1: fst(t)
, 
lapp_imon: <T List,@>
Lemmas referenced : 
le_int_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
le_wf, 
eqtt_to_assert, 
assert_of_le_int, 
length_wf, 
list_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
int_subtype_base, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
nth_tl_wf, 
mon_itop_wf, 
lapp_imon_wf, 
cons_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__lt, 
nil_wf, 
int_seg_wf, 
primrec-wf2, 
all_wf, 
equal_wf, 
nat_properties, 
nat_wf, 
lapp_fact_b, 
squash_wf, 
true_wf, 
istype-universe, 
tl_wf, 
length_tl, 
iff_weakening_equal, 
subtype_rel_self, 
grp_car_wf, 
imon_wf, 
select_tl, 
imon_subtype_grp_sig, 
itermAdd_wf, 
int_term_value_add_lemma, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
mon_itop_shift
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
baseClosed, 
independent_functionElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
universeIsType, 
hypothesisEquality, 
imageElimination, 
voidElimination, 
equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
rename, 
setElimination, 
baseApply, 
closedConclusion, 
applyEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
functionIsType, 
setIsType, 
functionEquality, 
universeEquality, 
imageMemberEquality, 
instantiate, 
dependent_set_memberEquality_alt, 
productIsType, 
addEquality
Latex:
\mforall{}T:Type.  \mforall{}n:\mBbbN{}.  \mforall{}as:T  List.    ((n  \mleq{}  ||as||)  {}\mRightarrow{}  (nth\_tl(n;as)  =  (\mPi{}  n  \mleq{}  i  <  ||as||.  [as[i]])))
Date html generated:
2019_10_16-PM-01_05_32
Last ObjectModification:
2018_10_08-AM-10_53_40
Theory : list_2
Home
Index