Nuprl Lemma : extend_restrict_perm_cancel

n:{1...}. ∀p:Sym(n).  (((p.f (n 1)) (n 1) ∈ ℕn)  (↑{n 1}(restrict_perm(p;n 1)) p ∈ Sym(n)))


Proof




Definitions occuring in Statement :  restrict_perm: restrict_perm(p;n) extend_perm: {n}(p) sym_grp: Sym(n) perm_f: p.f int_upper: {i...} int_seg: {i..j-} all: x:A. B[x] implies:  Q apply: a subtract: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] int_upper: {i...} sym_grp: Sym(n) perm: Perm(T) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top restrict_perm: restrict_perm(p;n) extend_perm: {n}(p) extend_permf: extend_permf(pf;n) squash: T subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b true: True iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B inv_funs: InvFuns(A;B;f;g) compose: g tidentity: Id{T} identity: Id so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf int_seg_wf perm_f_wf subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf perm_wf int_upper_wf inv_funs_wf perm_b_wf perm_properties squash_wf true_wf perm_sig_wf mk_perm_eta_rw mk_perm_wf eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int iff_weakening_equal equal-wf-T-base assert_wf int_subtype_base int_seg_properties decidable__equal_int_seg intformeq_wf int_formula_prop_eq_lemma bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot set_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache applyEquality dependent_functionElimination dependent_set_memberEquality independent_pairFormation hypothesisEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll equalitySymmetry imageElimination equalityTransitivity universeEquality equalityElimination productElimination promote_hyp instantiate cumulativity independent_functionElimination imageMemberEquality baseClosed functionEquality equalityUniverse levelHypothesis functionExtensionality applyLambdaEquality impliesFunctionality

Latex:
\mforall{}n:\{1...\}.  \mforall{}p:Sym(n).    (((p.f  (n  -  1))  =  (n  -  1))  {}\mRightarrow{}  (\muparrow{}\{n  -  1\}(restrict\_perm(p;n  -  1))  =  p))



Date html generated: 2017_10_01-AM-09_53_34
Last ObjectModification: 2017_03_03-PM-00_48_13

Theory : perms_1


Home Index