Nuprl Lemma : iota-two-face-maps

[I:Cname List]. ∀[x,y,z:Cname]. ∀[i,j:ℕ2].
  (((x:=i) (y:=j)) iota(z)) (iota(z) ((x:=i) (y:=j))) ∈ name-morph(I;[z I-[x; y]]) 
  supposing (x z ∈ Cname)) ∧ (y z ∈ Cname))


Proof




Definitions occuring in Statement :  name-comp: (f g) iota: iota(x) face-map: (x:=i) name-morph: name-morph(I;J) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] not: ¬A and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop: true: True subtype_rel: A ⊆B squash: T guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q all: x:A. B[x] coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A false: False int_seg: {i..j-} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  not_wf equal_wf coordinate_name_wf int_seg_wf name-comp-assoc list-diff_wf cname_deq_wf cons_wf nil_wf face-map_wf2 iota_wf name-morph_wf subtype_rel_wf squash_wf true_wf list_wf list-diff2 iff_weakening_equal subtype_rel_self iota-face-map name-comp_wf subtype_base_sq list_subtype_base set_subtype_base le_wf int_subtype_base list-diff-cons-single int_seg_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf cons_member member_singleton or_wf l_member_wf list-diff-cons deq-member_wf bool_wf eqtt_to_assert assert-deq-member eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis productEquality extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry natural_numberEquality applyEquality lambdaEquality imageElimination universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination applyLambdaEquality lambdaFormation dependent_functionElimination instantiate cumulativity intEquality setElimination rename dependent_pairFormation int_eqEquality voidElimination voidEquality independent_pairFormation dependent_set_memberEquality computeAll addLevel orFunctionality promote_hyp unionElimination equalityElimination hyp_replacement

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y,z:Cname].  \mforall{}[i,j:\mBbbN{}2].
    (((x:=i)  o  (y:=j))  o  iota(z))  =  (iota(z)  o  ((x:=i)  o  (y:=j)))  supposing  (\mneg{}(x  =  z))  \mwedge{}  (\mneg{}(y  =  z))



Date html generated: 2017_10_05-AM-10_08_27
Last ObjectModification: 2017_07_28-AM-11_16_51

Theory : cubical!sets


Home Index