Nuprl Lemma : iota-two-face-maps
∀[I:Cname List]. ∀[x,y,z:Cname]. ∀[i,j:ℕ2].
  (((x:=i) o (y:=j)) o iota(z)) = (iota(z) o ((x:=i) o (y:=j))) ∈ name-morph(I;[z / I-[x; y]]) 
  supposing (¬(x = z ∈ Cname)) ∧ (¬(y = z ∈ Cname))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
iota: iota(x)
, 
face-map: (x:=i)
, 
name-morph: name-morph(I;J)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
not_wf, 
equal_wf, 
coordinate_name_wf, 
int_seg_wf, 
name-comp-assoc, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
face-map_wf2, 
iota_wf, 
name-morph_wf, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
list_wf, 
list-diff2, 
iff_weakening_equal, 
subtype_rel_self, 
iota-face-map, 
name-comp_wf, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
list-diff-cons-single, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
cons_member, 
member_singleton, 
or_wf, 
l_member_wf, 
list-diff-cons, 
deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
productEquality, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
applyLambdaEquality, 
lambdaFormation, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
computeAll, 
addLevel, 
orFunctionality, 
promote_hyp, 
unionElimination, 
equalityElimination, 
hyp_replacement
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x,y,z:Cname].  \mforall{}[i,j:\mBbbN{}2].
    (((x:=i)  o  (y:=j))  o  iota(z))  =  (iota(z)  o  ((x:=i)  o  (y:=j)))  supposing  (\mneg{}(x  =  z))  \mwedge{}  (\mneg{}(y  =  z))
Date html generated:
2017_10_05-AM-10_08_27
Last ObjectModification:
2017_07_28-AM-11_16_51
Theory : cubical!sets
Home
Index