Nuprl Lemma : geo-intersect-points-iff

e:EuclideanPlane. ∀a,b,c,d:Point.
  (ab \/ cd
  ⇐⇒ a ≠ b
      ∧ c ≠ d
      ∧ (∃a1,b1,c1,d1,v:Point
          (a1-v-b1
          ∧ c1-v-d1
          ∧ Colinear(a1;a;b)
          ∧ Colinear(b1;a;b)
          ∧ Colinear(c1;c;d)
          ∧ Colinear(d1;c;d)
          ∧ a1 leftof c1d1
          ∧ b1 leftof d1c1)))


Proof




Definitions occuring in Statement :  geo-intersect-points: ab \/ cd euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-left: leftof bc geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: rev_implies:  Q exists: x:A. B[x] geo-intersect-points: ab \/ cd euclidean-plane: EuclideanPlane cand: c∧ B sq_stable: SqStable(P) squash: T or: P ∨ Q basic-geometry: BasicGeometry geo-midpoint: a=m=b l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False top: Top select: L[n] cons: [a b] less_than: a < b true: True ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-lsep: bc geo-strict-between: a-b-c oriented-plane: OrientedPlane basic-geometry-: BasicGeometry- geo-eq: a ≡ b
Lemmas referenced :  geo-intersect-points_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-strict-between_wf geo-colinear_wf geo-left_wf geo-point_wf left-implies-sep geo-SS_wf sq_stable__colinear sq_stable__geo-between geo-sep-or symmetric-point-construction geo-sep-sym colinear-lsep-cycle lsep-all-sym2 geo-between-sep geo-colinear-append cons_wf nil_wf istype-void istype-le length_of_cons_lemma length_of_nil_lemma istype-less_than length_wf select_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf l_member_wf geo-colinear-is-colinear-set geo-between-implies-colinear list_ind_cons_lemma list_ind_nil_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lsep-all-sym geo-colinear-same geo-congruent-symmetry geo-congruent-sep left-between geo-between_wf not-lsep-iff-colinear geo-between-symmetry geo-strict-between-implies-colinear lsep-colinear-sep geo-lsep_wf colinear-lsep-general geo-strict-between-sep1 geo-colinear-cases false_wf stable__false geo-eq_wf left-between-implies-right1 geo-strict-between-implies-between geo-strict-between-sep3 not-left-and-right geo-colinear_functionality geo-eq_weakening geo-left_functionality geo-sep_functionality geo-eq_inversion left-between-implies-right2 between-preserves-left-1 between-preserves-left-2 between-preserves-left-3 geo-strict-between-sep2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule productElimination productIsType because_Cache inhabitedIsType setElimination rename independent_functionElimination dependent_set_memberEquality_alt equalityIstype equalityTransitivity equalitySymmetry imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation_alt natural_numberEquality voidElimination isect_memberEquality_alt approximateComputation lambdaEquality_alt int_eqEquality inlFormation_alt functionIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (ab  \mbackslash{}/  cd
    \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b
            \mwedge{}  c  \mneq{}  d
            \mwedge{}  (\mexists{}a1,b1,c1,d1,v:Point
                    (a1-v-b1
                    \mwedge{}  c1-v-d1
                    \mwedge{}  Colinear(a1;a;b)
                    \mwedge{}  Colinear(b1;a;b)
                    \mwedge{}  Colinear(c1;c;d)
                    \mwedge{}  Colinear(d1;c;d)
                    \mwedge{}  a1  leftof  c1d1
                    \mwedge{}  b1  leftof  d1c1)))



Date html generated: 2019_10_16-PM-01_45_21
Last ObjectModification: 2019_08_19-PM-01_15_37

Theory : euclidean!plane!geometry


Home Index