Nuprl Lemma : hp-angle-sum-eq

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (abc ≅a a'b'c'
   xyz ≅a x'y'z'
   abc xyz ≅ ijk
   a'b'c' x'y'z' ≅ i'j'k'
   jk
   i' j'k'
   ijk ≅a i'j'k')


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry hp-angle-sum: abc xyz ≅ def and: P ∧ Q exists: x:A. B[x] geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-cong-angle: abc ≅a xyz cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m basic-geometry-: BasicGeometry- iff: ⇐⇒ Q geo-sep: a ≠ b geo-tri: Triangle(a;b;c) geo-strict-between: a-b-c uiff: uiff(P;Q) geo-cong-tri: Cong3(abc,a'b'c') geo-lsep: bc rev_implies:  Q oriented-plane: OrientedPlane squash: T true: True
Lemmas referenced :  hp-angle-sum-subst hp-angle-sum-subst1 geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf hp-angle-sum_wf geo-cong-angle_wf geo-point_wf hp-angle-sum-sep geo-cong-angle-refl geo-out_weakening geo-eq_weakening out-preserves-angle-cong_1 geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-O-X geo-sep-sym lsep-implies-sep geo-strict-between-sep3 geo-extend-exists out-preserves-lsep lsep-all-sym colinear-lsep geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than colinear-lsep-cycle geo-strict-between-sep2 geo-out-iff-between1 geo-between-symmetry geo-strict-between-implies-between geo-between-exchange3 geo-between-exchange4 geo-congruent-sep geo-out_transitivity geo-out_inversion geo-between_wf geo-sas euclidean-plane-axioms geo-cong-angle-symm2 geo-cong-angle-transitivity out-cong-angle geo-between-sep geo-between-trivial geo-five-segment geo-congruent-iff-length geo-length-flip p8geo geo-congruent-comm geo-left-out-3 extended-out-preserves-between geo-left-out-1 left-between-implies-right2 geo-left-out-2 geo-left-out left-between-implies-right1 Euclid-Prop7 geo-left_wf geo-between_functionality geo-strict-between-sep1 geo-add-length-between geo-add-length_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-add-length-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType productElimination setElimination rename isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType functionIsType equalitySymmetry equalityTransitivity imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  xyz  \mcong{}\msuba{}  x'y'z'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  i  \#  jk
    {}\mRightarrow{}  i'  \#  j'k'
    {}\mRightarrow{}  ijk  \mcong{}\msuba{}  i'j'k')



Date html generated: 2019_10_16-PM-02_06_53
Last ObjectModification: 2019_06_13-PM-02_26_53

Theory : euclidean!plane!geometry


Home Index