Nuprl Lemma : hyptrans_add

[rv:InnerProductSpace]. ∀[e,x:Point]. ∀[t,s:ℝ].
  hyptrans(rv;e;t s;x) ≡ hyptrans(rv;e;t;hyptrans(rv;e;s;x)) supposing e^2 r1


Proof




Definitions occuring in Statement :  hyptrans: hyptrans(rv;e;t;x) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y radd: b int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} prop: iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  hyptrans_decomp ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf hyptrans_wf radd_wf req_wf rv-ip_wf int-to-real_wf real_wf ss-point_wf ss-eq_wf rv-add_wf rv-mul_wf rmul_wf sinh_wf rsqrt_wf radd-non-neg rleq-int false_wf rv-ip-nonneg rleq_wf itermSubtract_wf itermMultiply_wf itermVar_wf req-iff-rsub-is-0 itermAdd_wf ss-eq_weakening uiff_transitivity ss-eq_functionality hyptrans_functionality req_weakening hyptrans_lemma ss-eq_transitivity rv-add_functionality rv-mul_functionality req_transitivity rmul_functionality sinh_functionality real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination sqequalRule lambdaEquality because_Cache isectElimination applyEquality instantiate natural_numberEquality isect_memberEquality equalityTransitivity equalitySymmetry voidElimination independent_functionElimination independent_pairFormation lambdaFormation dependent_set_memberEquality setElimination rename setEquality productEquality approximateComputation int_eqEquality intEquality voidEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,x:Point].  \mforall{}[t,s:\mBbbR{}].
    hyptrans(rv;e;t  +  s;x)  \mequiv{}  hyptrans(rv;e;t;hyptrans(rv;e;s;x))  supposing  e\^{}2  =  r1



Date html generated: 2017_10_05-AM-00_27_59
Last ObjectModification: 2017_06_21-PM-02_30_26

Theory : inner!product!spaces


Home Index