Nuprl Lemma : hyptrans_lemma

[rv:InnerProductSpace]. ∀[e,h:Point].
  ∀tau,t:ℝ.  hyptrans(rv;e;t;h sinh(tau) rsqrt(r1 h^2)*e) ≡ sinh(tau t) rsqrt(r1 h^2)*e 
  supposing (e^2 r1) ∧ (h ⋅ r0)


Proof




Definitions occuring in Statement :  hyptrans: hyptrans(rv;e;t;x) rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y sinh: sinh(x) rsqrt: rsqrt(x) req: y rmul: b radd: b int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] and: P ∧ Q hyptrans: hyptrans(rv;e;t;x) ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) prop: nat: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 top: Top rleq: x ≤ y rnonneg: rnonneg(x) rge: x ≥ y or: P ∨ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  real_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf hyptrans_wf rv-add_wf rv-mul_wf rmul_wf sinh_wf rsqrt_wf radd-non-neg int-to-real_wf rv-ip_wf rleq-int false_wf rv-ip-nonneg radd_wf rleq_wf req_wf ss-point_wf rnexp_wf le_wf req_functionality itermSubtract_wf itermAdd_wf itermVar_wf itermMultiply_wf itermConstant_wf req-iff-rsub-is-0 rv-ip-symmetry req_weakening req_transitivity rv-ip-add radd_functionality rv-ip-add2 rv-ip-mul rmul_functionality rv-ip-mul2 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_mul_lemma real_term_value_const_lemma rmul-assoc rsqrt_squared rnexp2 cosh2-sinh2 radd-preserves-req rsub_wf cosh_wf radd_comm trivial-rleq-radd rmul_preserves_rleq2 rnexp2-nonneg less_than'_wf nat_plus_wf rleq_functionality rmul-zero-both rleq-implies-rleq rleq_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq uiff_transitivity rsqrt-unique rmul-nonneg rsqrt_nonneg cosh-ge-1 set_wf equal_wf ss-eq_functionality rv-add_functionality ss-eq_weakening rv-mul_functionality req_inversion sinh-radd ss-eq_inversion rv-mul-add rminus_wf itermMinus_wf real_term_value_minus_lemma ss-eq_wf ss-eq_transitivity rv-add-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin extract_by_obid hypothesis sqequalRule lambdaEquality dependent_functionElimination hypothesisEquality because_Cache isectElimination applyEquality instantiate independent_isectElimination natural_numberEquality independent_functionElimination independent_pairFormation dependent_set_memberEquality productEquality isect_memberEquality equalityTransitivity equalitySymmetry voidElimination approximateComputation int_eqEquality intEquality voidEquality setElimination rename setEquality independent_pairEquality minusEquality axiomEquality inlFormation

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,h:Point].
    \mforall{}tau,t:\mBbbR{}.
        hyptrans(rv;e;t;h  +  sinh(tau)  *  rsqrt(r1  +  h\^{}2)*e)  \mequiv{}  h  +  sinh(tau  +  t)  *  rsqrt(r1  +  h\^{}2)*e 
    supposing  (e\^{}2  =  r1)  \mwedge{}  (h  \mcdot{}  e  =  r0)



Date html generated: 2017_10_05-AM-00_27_46
Last ObjectModification: 2017_06_21-PM-02_21_45

Theory : inner!product!spaces


Home Index