Nuprl Lemma : hyptrans_lemma
∀[rv:InnerProductSpace]. ∀[e,h:Point].
  ∀tau,t:ℝ.  hyptrans(rv;e;t;h + sinh(tau) * rsqrt(r1 + h^2)*e) ≡ h + sinh(tau + t) * rsqrt(r1 + h^2)*e 
  supposing (e^2 = r1) ∧ (h ⋅ e = r0)
Proof
Definitions occuring in Statement : 
hyptrans: hyptrans(rv;e;t;x)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
sinh: sinh(x)
, 
rsqrt: rsqrt(x)
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
hyptrans: hyptrans(rv;e;t;x)
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
prop: ℙ
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
rge: x ≥ y
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
real_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
hyptrans_wf, 
rv-add_wf, 
rv-mul_wf, 
rmul_wf, 
sinh_wf, 
rsqrt_wf, 
radd-non-neg, 
int-to-real_wf, 
rv-ip_wf, 
rleq-int, 
false_wf, 
rv-ip-nonneg, 
radd_wf, 
rleq_wf, 
req_wf, 
ss-point_wf, 
rnexp_wf, 
le_wf, 
req_functionality, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
rv-ip-symmetry, 
req_weakening, 
req_transitivity, 
rv-ip-add, 
radd_functionality, 
rv-ip-add2, 
rv-ip-mul, 
rmul_functionality, 
rv-ip-mul2, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rmul-assoc, 
rsqrt_squared, 
rnexp2, 
cosh2-sinh2, 
radd-preserves-req, 
rsub_wf, 
cosh_wf, 
radd_comm, 
trivial-rleq-radd, 
rmul_preserves_rleq2, 
rnexp2-nonneg, 
less_than'_wf, 
nat_plus_wf, 
rleq_functionality, 
rmul-zero-both, 
rleq-implies-rleq, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
uiff_transitivity, 
rsqrt-unique, 
rmul-nonneg, 
rsqrt_nonneg, 
cosh-ge-1, 
set_wf, 
equal_wf, 
ss-eq_functionality, 
rv-add_functionality, 
ss-eq_weakening, 
rv-mul_functionality, 
req_inversion, 
sinh-radd, 
ss-eq_inversion, 
rv-mul-add, 
rminus_wf, 
itermMinus_wf, 
real_term_value_minus_lemma, 
ss-eq_wf, 
ss-eq_transitivity, 
rv-add-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
natural_numberEquality, 
independent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
voidEquality, 
setElimination, 
rename, 
setEquality, 
independent_pairEquality, 
minusEquality, 
axiomEquality, 
inlFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e,h:Point].
    \mforall{}tau,t:\mBbbR{}.
        hyptrans(rv;e;t;h  +  sinh(tau)  *  rsqrt(r1  +  h\^{}2)*e)  \mequiv{}  h  +  sinh(tau  +  t)  *  rsqrt(r1  +  h\^{}2)*e 
    supposing  (e\^{}2  =  r1)  \mwedge{}  (h  \mcdot{}  e  =  r0)
Date html generated:
2017_10_05-AM-00_27_46
Last ObjectModification:
2017_06_21-PM-02_21_45
Theory : inner!product!spaces
Home
Index