Nuprl Lemma : cosh2-sinh2

[x:ℝ]. ((cosh(x)^2 sinh(x)^2) r1)


Proof




Definitions occuring in Statement :  sinh: sinh(x) cosh: cosh(x) rnexp: x^k1 rsub: y req: y int-to-real: r(n) real: uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: sinh: sinh(x) cosh: cosh(x) uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) all: x:A. B[x] guard: {T} subtype_rel: A ⊆B rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T so_lambda: λ2x.t[x] so_apply: x[s] rsub: y sq_stable: SqStable(P)
Lemmas referenced :  req_witness rsub_wf rnexp_wf false_wf le_wf cosh_wf sinh_wf int-to-real_wf real_wf rmul_wf req_functionality rsub_functionality rnexp2 req_weakening int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf expr_wf req_wf rexp_wf rminus_wf rdiv_wf rless-int rless_wf rmul_functionality int-rdiv-req set_wf equal_wf rmul_preserves_req uiff_transitivity req_transitivity rmul-distrib radd_functionality rmul_over_rminus rminus_functionality req_inversion rmul-assoc rmul-one-both radd_comm rmul-rdiv-cancel2 rmul_comm rminus-radd radd-assoc radd-ac rdiv_functionality rminus-as-rmul rminus-rminus radd-rminus-both radd-zero-both rmul-distrib2 rmul-identity1 radd-int rmul-zero-both squash_wf iff_weakening_equal sq_stable__req rexp0 rexp-radd rexp_functionality rmul-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality because_Cache independent_functionElimination independent_isectElimination productElimination addLevel instantiate cumulativity intEquality dependent_functionElimination equalityTransitivity equalitySymmetry voidElimination baseClosed applyEquality lambdaEquality setElimination rename setEquality inrFormation imageMemberEquality minusEquality addEquality imageElimination universeEquality multiplyEquality

Latex:
\mforall{}[x:\mBbbR{}].  ((cosh(x)\^{}2  -  sinh(x)\^{}2)  =  r1)



Date html generated: 2017_10_04-PM-10_40_40
Last ObjectModification: 2017_07_28-AM-08_51_04

Theory : reals_2


Home Index