Nuprl Lemma : cosh2-sinh2
∀[x:ℝ]. ((cosh(x)^2 - sinh(x)^2) = r1)
Proof
Definitions occuring in Statement : 
sinh: sinh(x)
, 
cosh: cosh(x)
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
sinh: sinh(x)
, 
cosh: cosh(x)
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rsub: x - y
, 
sq_stable: SqStable(P)
Lemmas referenced : 
req_witness, 
rsub_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
cosh_wf, 
sinh_wf, 
int-to-real_wf, 
real_wf, 
rmul_wf, 
req_functionality, 
rsub_functionality, 
rnexp2, 
req_weakening, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
radd_wf, 
expr_wf, 
req_wf, 
rexp_wf, 
rminus_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rmul_functionality, 
int-rdiv-req, 
set_wf, 
equal_wf, 
rmul_preserves_req, 
uiff_transitivity, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
rminus_functionality, 
req_inversion, 
rmul-assoc, 
rmul-one-both, 
radd_comm, 
rmul-rdiv-cancel2, 
rmul_comm, 
rminus-radd, 
radd-assoc, 
radd-ac, 
rdiv_functionality, 
rminus-as-rmul, 
rminus-rminus, 
radd-rminus-both, 
radd-zero-both, 
rmul-distrib2, 
rmul-identity1, 
radd-int, 
rmul-zero-both, 
squash_wf, 
iff_weakening_equal, 
sq_stable__req, 
rexp0, 
rexp-radd, 
rexp_functionality, 
rmul-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
independent_isectElimination, 
productElimination, 
addLevel, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
baseClosed, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
inrFormation, 
imageMemberEquality, 
minusEquality, 
addEquality, 
imageElimination, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}[x:\mBbbR{}].  ((cosh(x)\^{}2  -  sinh(x)\^{}2)  =  r1)
Date html generated:
2017_10_04-PM-10_40_40
Last ObjectModification:
2017_07_28-AM-08_51_04
Theory : reals_2
Home
Index