Nuprl Lemma : Taylor-series-around-zero-converges-everywhere
∀F:ℕ ⟶ ℝ ⟶ ℝ
  ((∀k:ℕ. ∀x,y:ℝ.  ((x = y) 
⇒ (F[k;x] = F[k;y])))
  
⇒ infinite-deriv-seq((-∞, ∞);i,x.F[i;x])
  
⇒ (∀r:{r:ℝ| r0 ≤ r} . lim k→∞.r^k * (F[k + 1;x]/r((k)!)) = λx.r0 for x ∈ (-∞, ∞))
  
⇒ lim k→∞.Σ{(F[i;r0]/r((i)!)) * x^i | 0≤i≤k} = λx.F[0;x] for x ∈ (-∞, ∞))
Proof
Definitions occuring in Statement : 
infinite-deriv-seq: infinite-deriv-seq(I;i,x.F[i; x])
, 
fun-converges-to: lim n→∞.f[n; x] = λy.g[y] for x ∈ I
, 
riiint: (-∞, ∞)
, 
rsum: Σ{x[k] | n≤k≤m}
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
fact: (n)!
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_seg: {i..j-}
, 
ge: i ≥ j 
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
label: ...$L... t
, 
pointwise-req: x[k] = y[k] for k ∈ [n,m]
, 
rsub: x - y
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
Taylor-series-converges-everywhere, 
int-to-real_wf, 
fun-converges-to_functionality, 
riiint_wf, 
rsum_wf, 
rmul_wf, 
rdiv_wf, 
int_seg_subtype_nat, 
false_wf, 
fact_wf, 
nat_plus_wf, 
rless-int, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
le_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
rless_wf, 
rnexp_wf, 
rsub_wf, 
int_seg_wf, 
real_wf, 
i-member_wf, 
nat_wf, 
set_wf, 
all_wf, 
rleq_wf, 
fun-converges-to_wf, 
decidable__le, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
rneq-int, 
fact-non-zero, 
infinite-deriv-seq_wf, 
req_wf, 
rsum_functionality, 
radd_wf, 
rminus_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
rminus-zero, 
radd_comm, 
radd-zero-both, 
rmul_functionality, 
rnexp_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
lambdaFormation, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
functionExtensionality, 
addEquality, 
independent_isectElimination, 
independent_pairFormation, 
inrFormation, 
productElimination, 
dependent_set_memberEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :applyLambdaEquality, 
voidElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
setEquality, 
functionEquality
Latex:
\mforall{}F:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}
    ((\mforall{}k:\mBbbN{}.  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (F[k;x]  =  F[k;y])))
    {}\mRightarrow{}  infinite-deriv-seq((-\minfty{},  \minfty{});i,x.F[i;x])
    {}\mRightarrow{}  (\mforall{}r:\{r:\mBbbR{}|  r0  \mleq{}  r\}  .  lim  k\mrightarrow{}\minfty{}.r\^{}k  *  (F[k  +  1;x]/r((k)!))  =  \mlambda{}x.r0  for  x  \mmember{}  (-\minfty{},  \minfty{}))
    {}\mRightarrow{}  lim  k\mrightarrow{}\minfty{}.\mSigma{}\{(F[i;r0]/r((i)!))  *  x\^{}i  |  0\mleq{}i\mleq{}k\}  =  \mlambda{}x.F[0;x]  for  x  \mmember{}  (-\minfty{},  \minfty{}))
Date html generated:
2016_10_26-AM-11_51_03
Last ObjectModification:
2016_08_30-AM-11_21_35
Theory : reals
Home
Index