Nuprl Lemma : i-finite-iff-bounded

I:Interval. (i-finite(I) ⇐⇒ ∃a,b:ℝ. ∀[r:ℝ]. a≤r≤supposing r ∈ I)


Proof




Definitions occuring in Statement :  i-member: r ∈ I i-finite: i-finite(I) interval: Interval rbetween: x≤y≤z real: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s] exists: x:A. B[x] rbetween: x≤y≤z rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False subtype_rel: A ⊆B real: uiff: uiff(P;Q) less_than: a < b squash: T less_than': less_than'(a;b) true: True guard: {T} rsub: y interval: Interval i-finite: i-finite(I) isl: isl(x) assert: b ifthenelse: if then else fi  btrue: tt cand: c∧ B bfalse: ff i-member: r ∈ I rge: x ≥ y or: P ∨ Q
Lemmas referenced :  i-finite_wf exists_wf real_wf uall_wf isect_wf i-member_wf rbetween_wf interval_wf left-endpoint_wf right-endpoint_wf less_than'_wf rsub_wf nat_plus_wf i-member-finite rleq_wf radd_wf int-to-real_wf radd-preserves-rleq rminus_wf rmul_wf uiff_transitivity rleq_functionality req_transitivity radd_functionality req_weakening rminus-as-rmul radd-assoc req_inversion rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-zero-both radd-zero-both rless-int rless_transitivity1 rless_irreflexivity uiff_transitivity2 radd-ac radd_comm radd-rminus-both squash_wf true_wf rminus-int rmax_wf rleq-rmax rmax_lb trivial-rless-radd rless_functionality_wrt_implies rleq_weakening_equal rmin_wf rmin-rleq rmin_ub rmin_strict_lb trivial-rsub-rless rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_pairFormation independent_isectElimination isect_memberFormation productElimination independent_pairEquality dependent_functionElimination because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination addEquality independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination inlFormation

Latex:
\mforall{}I:Interval.  (i-finite(I)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b:\mBbbR{}.  \mforall{}[r:\mBbbR{}].  a\mleq{}r\mleq{}b  supposing  r  \mmember{}  I)



Date html generated: 2016_10_26-AM-09_29_03
Last ObjectModification: 2016_09_11-PM-07_52_21

Theory : reals


Home Index