Nuprl Lemma : rpolynomial-complete-factors-ordered

n:ℕ+. ∀a:ℕ1 ⟶ ℝ. ∀z:ℕn ⟶ ℝ.
  ((∀j:ℕ1. ((z j) < (z (j 1))))
   ∀[x:ℝ]. ((Σi≤n. a_i x^i) ((a n) rprod(0;n 1;j.x j))) supposing ∀j:ℕn. ((Σi≤n. a_i j^i) r0))


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rpolynomial: i≤n. a_i x^i) rless: x < y rsub: y req: y rmul: b int-to-real: r(n) real: int_seg: {i..j-} nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q not: ¬A subtype_rel: A ⊆B int_seg: {i..j-} uall: [x:A]. B[x] so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s] uimplies: supposing a false: False lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: uiff: uiff(P;Q) subtract: m nat: ge: i ≥  guard: {T} rless: x < y sq_exists: x:A [B[x]] real: sq_stable: SqStable(P) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) rneq: x ≠ y le: A ≤ B less_than': less_than'(a;b)
Lemmas referenced :  rpolynomial-complete-factors istype-int set_subtype_base lelt_wf int_subtype_base istype-void int_seg_wf subtract_wf rless_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le istype-less_than add-member-int_seg2 decidable__le intformle_wf int_formula_prop_le_lemma real_wf nat_plus_wf nat_properties itermAdd_wf int_term_value_add_lemma primrec-wf2 nat_wf less_than_wf istype-nat zero-add sq_stable__less_than squash_wf true_wf subtract-add-cancel subtype_base_sq add-associates equal_wf istype-universe add_functionality_wrt_eq add-comm subtype_rel_self iff_weakening_equal add-swap add-commutes rless_transitivity2 rleq_weakening_rless minus-one-mul add-mul-special zero-mul add-zero int_seg_subtype_nat istype-false int_seg_properties intformeq_wf int_formula_prop_eq_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination sqequalRule functionIsType equalityIstype applyEquality isectElimination intEquality lambdaEquality_alt natural_numberEquality setElimination rename independent_isectElimination sqequalBase equalitySymmetry inhabitedIsType universeIsType dependent_set_memberEquality_alt productElimination independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination productIsType because_Cache closedConclusion addEquality setIsType functionEquality imageMemberEquality baseClosed imageElimination equalityTransitivity hyp_replacement applyLambdaEquality instantiate cumulativity universeEquality multiplyEquality inrFormation_alt inlFormation_alt

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbR{}.  \mforall{}z:\mBbbN{}n  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}j:\mBbbN{}n  -  1.  ((z  j)  <  (z  (j  +  1))))
    {}\mRightarrow{}  \mforall{}[x:\mBbbR{}].  ((\mSigma{}i\mleq{}n.  a\_i  *  x\^{}i)  =  ((a  n)  *  rprod(0;n  -  1;j.x  -  z  j))) 
          supposing  \mforall{}j:\mBbbN{}n.  ((\mSigma{}i\mleq{}n.  a\_i  *  z  j\^{}i)  =  r0))



Date html generated: 2019_10_29-AM-10_20_55
Last ObjectModification: 2019_01_14-PM-11_49_41

Theory : reals


Home Index