Nuprl Lemma : rprod-of-negative
∀n,m:ℤ. ∀x:{n..m + 1-} ⟶ ℝ.
  (((m - n rem 2) = 1 ∈ ℤ) 
⇒ (r0 < rprod(n;m;k.x[k]))) ∧ (((m - n rem 2) = 0 ∈ ℤ) 
⇒ (rprod(n;m;k.x[k]) < r0)) 
  supposing (∀k:{n..m + 1-}. (x[k] < r0)) ∧ (n ≤ m)
Proof
Definitions occuring in Statement : 
rprod: rprod(n;m;k.x[k])
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
remainder: n rem m
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
nat: ℕ
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
ge: i ≥ j 
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
eq_int: (i =z j)
, 
cand: A c∧ B
Lemmas referenced : 
rprod-of-positive, 
rminus_wf, 
int_seg_wf, 
rmul_reverses_rless_iff, 
int-to-real_wf, 
rless-int, 
rless_wf, 
istype-le, 
real_wf, 
istype-int, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
rless_functionality, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rprod_wf, 
rnexp_wf, 
subtract_wf, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
subtype_base_sq, 
int_subtype_base, 
eq_int_wf, 
ifthenelse_wf, 
btrue_wf, 
bfalse_wf, 
nat_properties, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
req_weakening, 
rprod-rminus, 
rmul_functionality, 
req_inversion, 
rnexp-add, 
rnexp1, 
rnexp-minus-one, 
rem_bounds_1, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
decidable__equal_int, 
int_seg_properties, 
rless-implies-rless, 
int_seg_subtype_special, 
int_seg_cases, 
rsub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
applyEquality, 
hypothesis, 
universeIsType, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
productElimination, 
because_Cache, 
minusEquality, 
independent_functionElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productIsType, 
functionIsType, 
inhabitedIsType, 
approximateComputation, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
remainderEquality, 
closedConclusion, 
instantiate, 
cumulativity, 
intEquality, 
sqequalBase, 
equalityElimination, 
applyLambdaEquality, 
hypothesis_subsumption
Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    (((m  -  n  rem  2)  =  1)  {}\mRightarrow{}  (r0  <  rprod(n;m;k.x[k])))
    \mwedge{}  (((m  -  n  rem  2)  =  0)  {}\mRightarrow{}  (rprod(n;m;k.x[k])  <  r0)) 
    supposing  (\mforall{}k:\{n..m  +  1\msupminus{}\}.  (x[k]  <  r0))  \mwedge{}  (n  \mleq{}  m)
Date html generated:
2019_10_29-AM-10_17_54
Last ObjectModification:
2019_01_15-PM-01_16_04
Theory : reals
Home
Index