Nuprl Lemma : rprod-of-negative

n,m:ℤ. ∀x:{n..m 1-} ⟶ ℝ.
  (((m rem 2) 1 ∈ ℤ (r0 < rprod(n;m;k.x[k]))) ∧ (((m rem 2) 0 ∈ ℤ (rprod(n;m;k.x[k]) < r0)) 
  supposing (∀k:{n..m 1-}. (x[k] < r0)) ∧ (n ≤ m)


Proof




Definitions occuring in Statement :  rprod: rprod(n;m;k.x[k]) rless: x < y int-to-real: r(n) real: int_seg: {i..j-} uimplies: supposing a so_apply: x[s] le: A ≤ B all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] remainder: rem m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] so_apply: x[s] and: P ∧ Q implies:  Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: guard: {T} uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top nat: rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] nequal: a ≠ b ∈  sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff ifthenelse: if then else fi  ge: i ≥  int_seg: {i..j-} lelt: i ≤ j < k eq_int: (i =z j) cand: c∧ B
Lemmas referenced :  rprod-of-positive rminus_wf int_seg_wf rmul_reverses_rless_iff int-to-real_wf rless-int rless_wf istype-le real_wf istype-int rmul_wf itermSubtract_wf itermMultiply_wf itermMinus_wf itermVar_wf itermConstant_wf rless_functionality req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma rprod_wf rnexp_wf subtract_wf nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf subtype_base_sq int_subtype_base eq_int_wf ifthenelse_wf btrue_wf bfalse_wf nat_properties intformeq_wf int_formula_prop_eq_lemma req_weakening rprod-rminus rmul_functionality req_inversion rnexp-add rnexp1 rnexp-minus-one rem_bounds_1 decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than decidable__equal_int int_seg_properties rless-implies-rless int_seg_subtype_special int_seg_cases rsub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality_alt isectElimination applyEquality hypothesis universeIsType addEquality natural_numberEquality independent_isectElimination productElimination because_Cache minusEquality independent_functionElimination independent_pairFormation imageMemberEquality baseClosed productIsType functionIsType inhabitedIsType approximateComputation int_eqEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt setElimination rename unionElimination dependent_pairFormation_alt equalityIstype remainderEquality closedConclusion instantiate cumulativity intEquality sqequalBase equalityElimination applyLambdaEquality hypothesis_subsumption

Latex:
\mforall{}n,m:\mBbbZ{}.  \mforall{}x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}.
    (((m  -  n  rem  2)  =  1)  {}\mRightarrow{}  (r0  <  rprod(n;m;k.x[k])))
    \mwedge{}  (((m  -  n  rem  2)  =  0)  {}\mRightarrow{}  (rprod(n;m;k.x[k])  <  r0)) 
    supposing  (\mforall{}k:\{n..m  +  1\msupminus{}\}.  (x[k]  <  r0))  \mwedge{}  (n  \mleq{}  m)



Date html generated: 2019_10_29-AM-10_17_54
Last ObjectModification: 2019_01_15-PM-01_16_04

Theory : reals


Home Index