Nuprl Lemma : fun2listCantor
∀n:ℕ. ∀f:ℕn ⟶ 𝔹.  ∃l:𝔹 List. ((||l|| = n ∈ ℤ) ∧ (f = (λx.l[x]) ∈ (ℕn ⟶ 𝔹)))
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
cand: A c∧ B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
label: ...$L... t
, 
squash: ↓T
Lemmas referenced : 
int_seg_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
bool_wf, 
subtract_wf, 
list_wf, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
select_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
itermSubtract_wf, 
intformeq_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
istype-less_than, 
primrec-wf2, 
all_wf, 
exists_wf, 
equal-wf-base, 
equal_wf, 
nat_properties, 
istype-nat, 
nil_wf, 
length_of_nil_lemma, 
stuck-spread, 
istype-base, 
subtype_rel_function, 
int_seg_subtype, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
subtype_rel_self, 
append_wf, 
cons_wf, 
istype-le, 
length-append, 
length_of_cons_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
length_wf, 
squash_wf, 
true_wf, 
istype-universe, 
less_than_wf, 
iff_weakening_equal, 
select_append_back, 
select-cons-hd, 
select_append_front
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
Error :functionIsType, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :productIsType, 
Error :equalityIstype, 
Error :inhabitedIsType, 
applyEquality, 
intEquality, 
closedConclusion, 
because_Cache, 
baseApply, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
Error :setIsType, 
functionEquality, 
productEquality, 
Error :functionExtensionality_alt, 
addEquality, 
minusEquality, 
multiplyEquality, 
Error :dependent_set_memberEquality_alt, 
functionExtensionality, 
imageElimination, 
instantiate, 
universeEquality, 
imageMemberEquality, 
Error :equalityIsType1
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    \mexists{}l:\mBbbB{}  List.  ((||l||  =  n)  \mwedge{}  (f  =  (\mlambda{}x.l[x])))
Date html generated:
2019_06_20-PM-02_53_05
Last ObjectModification:
2018_11_22-AM-09_59_24
Theory : continuity
Home
Index