Nuprl Lemma : fun2listCantor

n:ℕ. ∀f:ℕn ⟶ 𝔹.  ∃l:𝔹 List. ((||l|| n ∈ ℤ) ∧ (f x.l[x]) ∈ (ℕn ⟶ 𝔹)))


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q ge: i ≥  select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B le: A ≤ B less_than': less_than'(a;b) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True label: ...$L... t squash: T
Lemmas referenced :  int_seg_wf int_seg_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf bool_wf subtract_wf list_wf length_wf_nat set_subtype_base le_wf int_subtype_base select_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt itermSubtract_wf intformeq_wf int_term_value_subtract_lemma int_formula_prop_eq_lemma istype-less_than primrec-wf2 all_wf exists_wf equal-wf-base equal_wf nat_properties istype-nat nil_wf length_of_nil_lemma stuck-spread istype-base subtype_rel_function int_seg_subtype istype-false not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self append_wf cons_wf istype-le length-append length_of_cons_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma length_wf squash_wf true_wf istype-universe less_than_wf iff_weakening_equal select_append_back select-cons-hd select_append_front
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin Error :functionIsType,  Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis hypothesisEquality setElimination rename productElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :productIsType,  Error :equalityIstype,  Error :inhabitedIsType,  applyEquality intEquality closedConclusion because_Cache baseApply baseClosed sqequalBase equalitySymmetry equalityTransitivity unionElimination Error :setIsType,  functionEquality productEquality Error :functionExtensionality_alt,  addEquality minusEquality multiplyEquality Error :dependent_set_memberEquality_alt,  functionExtensionality imageElimination instantiate universeEquality imageMemberEquality Error :equalityIsType1

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.    \mexists{}l:\mBbbB{}  List.  ((||l||  =  n)  \mwedge{}  (f  =  (\mlambda{}x.l[x])))



Date html generated: 2019_06_20-PM-02_53_05
Last ObjectModification: 2018_11_22-AM-09_59_24

Theory : continuity


Home Index