Nuprl Lemma : unsquashed-BIM-implies-unsquashed-weak-continuity-old
(∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
   ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕ. Q[n + 1;s.m@n]) 
⇒ Q[n;s]))
   
⇒ (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕ. Q[n;f]))
   
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ.  (B[n;s] 
⇒ B[n + 1;s.m@n]))
   
⇒ (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s] 
⇒ Q[n;s]))
   
⇒ Q[0;λx.⊥]))
⇒ (∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀a:ℕ ⟶ ℕ.  ∃n:ℕ. ∀b:ℕ ⟶ ℕ. ((∀i:ℕn. ((a i) = (b i) ∈ ℕ)) 
⇒ ((F a) = (F b) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
seq-add: s.x@n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bottom: ⊥
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
int_upper: {i...}
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
seq-add: s.x@n
, 
rep-seq-from: rep-seq-from(s;n;f)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
nat_wf, 
all_wf, 
int_seg_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
seq-add_wf, 
quotient_wf, 
exists_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
true_wf, 
equiv_rel_true, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
rep-seq-from_wf, 
int_upper_wf, 
int_upper_properties, 
int_upper_subtype_int_upper, 
rep-seq-from-prop3, 
squash_wf, 
iff_weakening_equal, 
strong-continuity2-implies-weak, 
implies-quotient-true, 
rep-seq-from-prop1, 
decidable__lt, 
lelt_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
eq_int_wf, 
assert_of_eq_int, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rep-seq-from-0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
functionEquality, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
sqequalRule, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
functionExtensionality, 
dependent_set_memberEquality, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
productElimination, 
independent_functionElimination, 
applyLambdaEquality, 
hyp_replacement, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
int_eqReduceTrueSq, 
promote_hyp, 
int_eqReduceFalseSq
Latex:
(\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
      ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  Q[n;f]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (B[n;s]  {}\mRightarrow{}  B[n  +  1;s.m@n]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  Q[0;\mlambda{}x.\mbot{}]))
{}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  ((a  i)  =  (b  i)))  {}\mRightarrow{}  ((F  a)  =  (F  b))))
Date html generated:
2017_04_20-AM-07_21_38
Last ObjectModification:
2017_02_27-PM-05_58_04
Theory : continuity
Home
Index