Nuprl Lemma : unsquashed-BIM-implies-unsquashed-weak-continuity-old

(∀B,Q:n:ℕ ⟶ (ℕn ⟶ ℕ) ⟶ ℙ.
   ((∀n:ℕ. ∀s:ℕn ⟶ ℕ.  ((∀m:ℕQ[n 1;s.m@n])  Q[n;s]))
    (∀f:ℕ ⟶ ℕ. ⇃(∃n:ℕQ[n;f]))
    (∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀m:ℕ.  (B[n;s]  B[n 1;s.m@n]))
    (∀n:ℕ. ∀s:ℕn ⟶ ℕ.  (B[n;s]  Q[n;s]))
    Q[0;λx.⊥]))
 (∀F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀a:ℕ ⟶ ℕ.  ∃n:ℕ. ∀b:ℕ ⟶ ℕ((∀i:ℕn. ((a i) (b i) ∈ ℕ))  ((F a) (F b) ∈ ℕ)))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] seq-add: s.x@n int_seg: {i..j-} nat: bottom: prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q true: True apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s1;s2] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2y.t[x; y] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k int_upper: {i...} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b seq-add: s.x@n rep-seq-from: rep-seq-from(s;n;f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  nat_wf all_wf int_seg_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf seq-add_wf quotient_wf exists_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self true_wf equiv_rel_true int_seg_properties intformless_wf int_formula_prop_less_lemma equal_wf rep-seq-from_wf int_upper_wf int_upper_properties int_upper_subtype_int_upper rep-seq-from-prop3 squash_wf iff_weakening_equal strong-continuity2-implies-weak implies-quotient-true rep-seq-from-prop1 decidable__lt lelt_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eq_int_wf assert_of_eq_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int rep-seq-from-0
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation functionEquality cut introduction extract_by_obid hypothesis instantiate sqequalHypSubstitution isectElimination thin applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality sqequalRule natural_numberEquality setElimination rename because_Cache functionExtensionality dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination independent_functionElimination applyLambdaEquality hyp_replacement equalityTransitivity equalitySymmetry imageElimination imageMemberEquality baseClosed equalityElimination lessCases isect_memberFormation sqequalAxiom int_eqReduceTrueSq promote_hyp int_eqReduceFalseSq

Latex:
(\mforall{}B,Q:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbP{}.
      ((\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    ((\mforall{}m:\mBbbN{}.  Q[n  +  1;s.m@n])  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  (\mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  Q[n;f]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}m:\mBbbN{}.    (B[n;s]  {}\mRightarrow{}  B[n  +  1;s.m@n]))
      {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.    (B[n;s]  {}\mRightarrow{}  Q[n;s]))
      {}\mRightarrow{}  Q[0;\mlambda{}x.\mbot{}]))
{}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.    \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  ((\mforall{}i:\mBbbN{}n.  ((a  i)  =  (b  i)))  {}\mRightarrow{}  ((F  a)  =  (F  b))))



Date html generated: 2017_04_20-AM-07_21_38
Last ObjectModification: 2017_02_27-PM-05_58_04

Theory : continuity


Home Index