Nuprl Lemma : find_transitions_wf
∀[A:Type]. ∀[f:A ⟶ A ⟶ 𝔹]. ∀[L:A List].  find_transitions(f;L) ∈ Unit + ℤ × (Unit + ℤ) supposing 1 < ||L||
Proof
Definitions occuring in Statement : 
find_transitions: find_transitions(f;L), 
length: ||as||, 
list: T List, 
bool: 𝔹, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
union: left + right, 
natural_number: $n, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
false: False, 
and: P ∧ Q, 
cons: [a / b], 
top: Top, 
find_transitions: find_transitions(f;L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
has-value: (a)↓, 
bool: 𝔹, 
ge: i ≥ j , 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
uiff: uiff(P;Q), 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
spreadn: spread4, 
isr: isr(x), 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
btrue: tt, 
bfalse: ff, 
band: p ∧b q, 
unit: Unit, 
it: ⋅, 
bnot: ¬bb, 
exists: ∃x:A. B[x], 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
spread_cons_lemma, 
reduce_tl_cons_lemma, 
value-type-has-value, 
bool_wf, 
union-value-type, 
unit_wf2, 
hd_wf, 
decidable__le, 
length_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
add-associates, 
minus-add, 
add-swap, 
add-commutes, 
minus-one-mul, 
minus-one-mul-top, 
zero-add, 
add_functionality_wrt_le, 
le-add-cancel2, 
it_wf, 
equal_wf, 
less_than_wf, 
list_wf, 
pi2_wf, 
list_accum'_wf, 
null_nil_lemma, 
eqtt_to_assert, 
int-value-type, 
bnot_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
eqff_to_assert, 
assert-bnot, 
bfalse_wf, 
btrue_wf, 
null_cons_lemma, 
reduce_hd_cons_lemma, 
and_wf, 
isl_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
callbyvalueReduce, 
independent_isectElimination, 
because_Cache, 
applyEquality, 
functionExtensionality, 
cumulativity, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
independent_functionElimination, 
addEquality, 
lambdaEquality, 
intEquality, 
minusEquality, 
inlEquality, 
unionEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
universeEquality, 
productEquality, 
setElimination, 
rename, 
sqleReflexivity, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
dependent_pairEquality, 
independent_pairEquality, 
inrEquality, 
setEquality, 
dependent_set_memberEquality, 
applyLambdaEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].
    find\_transitions(f;L)  \mmember{}  Unit  +  \mBbbZ{}  \mtimes{}  (Unit  +  \mBbbZ{})  supposing  1  <  ||L||
Date html generated:
2017_09_29-PM-05_49_47
Last ObjectModification:
2017_07_26-PM-01_38_42
Theory : list_0
Home
Index