Nuprl Lemma : list_accum'_wf
∀[A,B:Type].
  ∀[f:B ⟶ {L:A List| 0 < ||L||}  ⟶ B]. ∀[L:A List]. ∀[v:B].  (list_accum'(f;v;L) ∈ B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
list_accum': list_accum'(f;v;L), 
length: ||as||, 
list: T List, 
valueall-type: valueall-type(T), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
nat_plus: ℕ+, 
has-valueall: has-valueall(a), 
has-value: (a)↓, 
callbyvalueall: callbyvalueall, 
exists: ∃x:A. B[x], 
bfalse: ff, 
less_than: a < b, 
sq_type: SQType(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
it: ⋅, 
nil: [], 
subtract: n - m, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
decidable: Dec(P), 
true: True, 
less_than': less_than'(a;b), 
not: ¬A, 
le: A ≤ B, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
squash: ↓T, 
so_apply: x[s1;s2], 
top: Top, 
so_lambda: λ2x y.t[x; y], 
colength: colength(L), 
cons: [a / b], 
btrue: tt, 
ifthenelse: if b then t else f fi , 
list_accum': list_accum'(f;v;L), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}, 
ge: i ≥ j , 
false: False, 
implies: P ⇒ Q, 
nat: ℕ, 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
decidable__lt, 
omega-shadow, 
minus-zero, 
not-lt-2, 
zero-mul, 
mul-distributes-right, 
two-mul, 
add-mul-special, 
one-mul, 
le_reflexive, 
valueall-type_wf, 
list_wf, 
evalall-reduce, 
length_wf, 
cons_wf, 
length_wf_nat, 
non_neg_length, 
length_of_cons_lemma, 
valueall-type-has-valueall, 
null_cons_lemma, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
add-swap, 
minus-minus, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
equal_wf, 
le_wf, 
add-commutes, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
false_wf, 
decidable__le, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
le_antisymmetry_iff, 
sq_stable__le, 
spread_cons_lemma, 
product_subtype_list, 
null_nil_lemma, 
list-cases, 
colength_wf_list, 
nat_wf, 
equal-wf-T-base, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties
Rules used in proof : 
multiplyEquality, 
universeEquality, 
setEquality, 
functionEquality, 
callbyvalueReduce, 
sqequalIntensionalEquality, 
dependent_pairFormation, 
functionExtensionality, 
instantiate, 
intEquality, 
minusEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
voidEquality, 
productElimination, 
hypothesis_subsumption, 
promote_hyp, 
unionElimination, 
because_Cache, 
applyEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
isect_memberEquality, 
dependent_functionElimination, 
lambdaEquality, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
sqequalRule, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
lambdaFormation, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A,B:Type].
    \mforall{}[f:B  {}\mrightarrow{}  \{L:A  List|  0  <  ||L||\}    {}\mrightarrow{}  B].  \mforall{}[L:A  List].  \mforall{}[v:B].    (list\_accum'(f;v;L)  \mmember{}  B) 
    supposing  valueall-type(B)
Date html generated:
2017_04_14-AM-08_48_31
Last ObjectModification:
2017_04_10-PM-10_33_51
Theory : list_0
Home
Index