Nuprl Lemma : filter-upto-length

[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List].  (filter(P;L) map(λi.L[i];filter(λi.(P L[i]);upto(||L||))))


Proof




Definitions occuring in Statement :  upto: upto(n) select: L[n] length: ||as|| filter: filter(P;l) map: map(f;as) list: List bool: 𝔹 uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] upto: upto(n) from-upto: [n, m) ifthenelse: if then else fi  lt_int: i <j bfalse: ff cons: [a b] colength: colength(L) decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) int_seg: {i..j-} lelt: i ≤ j < k btrue: tt append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bool: 𝔹 unit: Unit subtract: m compose: g bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases filter_nil_lemma stuck-spread base_wf length_of_nil_lemma map_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int filter_cons_lemma length_of_cons_lemma list_wf bool_wf upto_decomp length_wf add_nat_wf length_wf_nat false_wf add-is-int-iff non_neg_length decidable__lt lelt_wf list_ind_cons_lemma list_ind_nil_lemma eqtt_to_assert map_cons_lemma add-subtract-cancel upto_wf int_seg_wf filter_map add-member-int_seg2 select_wf cons_wf int_seg_properties map-map select_cons_tl_sq eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot uiff_transitivity assert_wf bnot_wf not_wf assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom cumulativity applyEquality because_Cache unionElimination baseClosed promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination functionEquality universeEquality pointwiseFunctionality baseApply closedConclusion functionExtensionality equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].    (filter(P;L)  \msim{}  map(\mlambda{}i.L[i];filter(\mlambda{}i.(P  L[i]);upto(||L||))))



Date html generated: 2017_04_17-AM-08_36_57
Last ObjectModification: 2017_02_27-PM-04_55_49

Theory : list_1


Home Index