Nuprl Lemma : list-partition_wf

T:Type. ∀L:T List. ∀f:ℕ||L|| ⟶ 𝔹.  (list-partition(f;L) ∈ List × (T List))


Proof




Definitions occuring in Statement :  list-partition: list-partition(f;L) length: ||as|| list: List int_seg: {i..j-} bool: 𝔹 all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q list-partition: list-partition(f;L) so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True int_seg: {i..j-} lelt: i ≤ j < k bool: 𝔹 unit: Unit btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases length_of_nil_lemma list_ind_nil_lemma nil_wf int_seg_wf bool_wf product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq nat_wf set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf intformeq_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le length_of_cons_lemma list_ind_cons_lemma subtype_rel_function length_wf int_seg_subtype not-le-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-associates add-commutes le-add-cancel subtype_rel_self non_neg_length decidable__lt eqtt_to_assert cons_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  unionElimination independent_pairEquality Error :functionIsType,  promote_hyp hypothesis_subsumption productElimination Error :equalityIsType1,  because_Cache Error :dependent_set_memberEquality_alt,  instantiate cumulativity intEquality imageElimination applyLambdaEquality Error :equalityIsType4,  addEquality applyEquality minusEquality multiplyEquality functionExtensionality Error :productIsType,  equalityElimination universeEquality

Latex:
\mforall{}T:Type.  \mforall{}L:T  List.  \mforall{}f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}.    (list-partition(f;L)  \mmember{}  T  List  \mtimes{}  (T  List))



Date html generated: 2019_06_20-PM-01_48_14
Last ObjectModification: 2018_10_04-PM-02_29_09

Theory : list_1


Home Index