Nuprl Lemma : remove-first-no_repeats-member

[T:Type]
  ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹. ∀x:T.
    (no_repeats(T;L)
     (∀a,b:{x:T| (x ∈ L)} .  (((↑(P a)) ∧ (↑(P b)))  (a b ∈ T)))
     ((x ∈ remove-first(P;L)) ⇐⇒ (x ∈ L) ∧ (↑¬b(P x))))


Proof




Definitions occuring in Statement :  remove-first: remove-first(P;L) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List bnot: ¬bb assert: b bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s1;s2;s3] top: Top so_lambda: so_lambda3 remove-first: remove-first(P;L) rev_implies:  Q iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x] false: False not: ¬A uiff: uiff(P;Q) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) or: P ∨ Q exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  equal_wf list_ind_cons_lemma list_ind_nil_lemma list_wf bnot_wf assert_wf set_wf bool_wf subtype_rel_dep_function remove-first_wf l_member_wf iff_wf all_wf no_repeats_wf list_induction assert_witness btrue_neq_bfalse btrue_wf null_nil_lemma nil_wf member-implies-null-eq-bfalse cons_wf no_repeats_cons assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert eqtt_to_assert assert_of_bnot cons_member not_wf or_wf and_wf assert_elim not_assert_elim subtype_rel_self remove-first-member-implies bfalse_wf istype-assert list-subtype no_repeats-subtype istype-universe l_member-settype
Rules used in proof :  cut universeEquality voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_functionElimination functionExtensionality productEquality rename setElimination independent_isectElimination setEquality applyEquality because_Cache hypothesis cumulativity functionEquality lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution productElimination equalitySymmetry equalityTransitivity independent_pairFormation instantiate promote_hyp dependent_pairFormation equalityElimination unionElimination andLevelFunctionality impliesFunctionality addLevel inrFormation levelHypothesis applyLambdaEquality dependent_set_memberEquality hyp_replacement inlFormation isect_memberFormation_alt lambdaFormation_alt dependent_set_memberEquality_alt universeIsType lambdaEquality_alt setIsType functionIsType productIsType equalityIstype inhabitedIsType

Latex:
\mforall{}[T:Type]
    \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.  \mforall{}x:T.
        (no\_repeats(T;L)
        {}\mRightarrow{}  (\mforall{}a,b:\{x:T|  (x  \mmember{}  L)\}  .    (((\muparrow{}(P  a))  \mwedge{}  (\muparrow{}(P  b)))  {}\mRightarrow{}  (a  =  b)))
        {}\mRightarrow{}  ((x  \mmember{}  remove-first(P;L))  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L)  \mwedge{}  (\muparrow{}\mneg{}\msubb{}(P  x))))



Date html generated: 2020_05_19-PM-09_45_37
Last ObjectModification: 2020_01_04-PM-07_59_45

Theory : list_1


Home Index