Nuprl Lemma : select_concat_sum

[T:Type]. ∀[ll:T List List]. ∀[i:ℕ||ll||]. ∀[j:ℕ||ll[i]||].  (ll[i][j] concat(ll)[Σ(||ll[k]|| k < i) j] ∈ T)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) select: L[n] length: ||as|| concat: concat(ll) list: List int_seg: {i..j-} uall: [x:A]. B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) cand: c∧ B int_iseg: {i...j} gt: i > j
Lemmas referenced :  int_seg_wf length_wf select_wf list_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma select_concat add-member-int_seg1 sum_wf int_seg_subtype_nat concat_wf lelt_wf subtract_wf false_wf sum_lower_bound le_wf non_neg_length itermMultiply_wf int_term_value_mul_lemma itermSubtract_wf int_term_value_subtract_lemma sum_split length_wf_nat itermAdd_wf int_term_value_add_lemma less_than_wf squash_wf true_wf length_concat iff_weakening_equal subtype_base_sq int_subtype_base sum1 equal_wf zero-add add-is-int-iff firstn_wf length_firstn subtype_rel_sets sum_functionality length_firstn_eq select_firstn decidable__or equal-wf-base or_wf decidable__equal_int intformor_wf intformeq_wf int_formula_prop_or_lemma int_formula_prop_eq_lemma sum_split+ subtract-is-int-iff zero-le-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality because_Cache hypothesis setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageElimination universeEquality isect_memberFormation axiomEquality applyEquality dependent_set_memberEquality lambdaFormation addEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_functionElimination instantiate pointwiseFunctionality promote_hyp baseApply closedConclusion hyp_replacement applyLambdaEquality productEquality setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[ll:T  List  List].  \mforall{}[i:\mBbbN{}||ll||].  \mforall{}[j:\mBbbN{}||ll[i]||].
    (ll[i][j]  =  concat(ll)[\mSigma{}(||ll[k]||  |  k  <  i)  +  j])



Date html generated: 2017_04_17-AM-08_50_50
Last ObjectModification: 2017_02_27-PM-05_12_23

Theory : list_1


Home Index