Nuprl Lemma : fact-increasing

[m:ℕ]. ∀[n:ℕ+].  (n <  (n)! < (m)!)


Proof




Definitions occuring in Statement :  fact: (n)! nat_plus: + nat: less_than: a < b uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m le: A ≤ B less_than': less_than'(a;b) true: True less_than: a < b squash: T fact: (n)! primrec: primrec(n;b;c) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf member-less_than fact_wf nat_plus_properties nat_plus_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma le_wf nat_plus_subtype_nat nat_wf fact_unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__equal_int int_subtype_base fact0_redex_lemma fact_unroll_1 intformeq_wf int_formula_prop_eq_lemma mul_preserves_lt decidable__lt intformimplies_wf int_formual_prop_imp_lemma multiply-is-int-iff itermMultiply_wf int_term_value_mul_lemma false_wf not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-commutes le-add-cancel2 condition-implies-le minus-add add-swap minus-minus minus-one-mul zero-add minus-one-mul-top le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation applyEquality because_Cache unionElimination dependent_set_memberEquality equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity imageElimination imageMemberEquality baseClosed multiplyEquality pointwiseFunctionality baseApply closedConclusion addEquality minusEquality

Latex:
\mforall{}[m:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (n  <  m  {}\mRightarrow{}  (n)!  <  (m)!)



Date html generated: 2018_05_21-PM-01_01_13
Last ObjectModification: 2018_05_19-AM-06_39_24

Theory : num_thy_1


Home Index