Nuprl Lemma : less-fast-fib

n:ℕ{m:ℕfib(n) ∈ ℕ


Proof




Definitions occuring in Statement :  fib: fib(n) nat: all: x:A. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q guard: {T} le: A ≤ B subtract: m squash: T true: True sq_type: SQType(T) fib: fib(n) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff less_than': less_than'(a;b) nequal: a ≠ b ∈  int_upper: {i...} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bnot: ¬bb assert: b iff: ⇐⇒ Q rev_implies:  Q less_than: a < b
Lemmas referenced :  nat_wf set_subtype_base le_wf int_subtype_base istype-less_than istype-int primrec-wf2 all_wf set_wf equal-wf-base less_than_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf zero-add itermAdd_wf int_term_value_add_lemma add-subtract-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-associates add-swap add-commutes fib_wf squash_wf true_wf intformless_wf int_formula_prop_less_lemma subtype_base_sq testxxx_lemma upper_subtype_nat istype-false nequal-le-implies eq_int_wf eqtt_to_assert assert_of_eq_int int_upper_properties eqff_to_assert bool_subtype_base bool_cases_sqequal bool_wf assert-bnot neg_assert_of_eq_int equal_wf istype-universe add-comm subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_rel_self iff_weakening_equal add_functionality_wrt_eq decidable__lt equal-wf-base-T false_wf subtype_rel_sets add-zero
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  thin Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  because_Cache rename setElimination sqequalRule Error :functionIsType,  introduction extract_by_obid hypothesis Error :setIsType,  Error :equalityIsType4,  baseApply closedConclusion baseClosed applyEquality sqequalHypSubstitution isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination equalityTransitivity equalitySymmetry functionEquality Error :dependent_set_memberEquality_alt,  dependent_functionElimination unionElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation addEquality Error :dependent_set_memberFormation_alt,  applyLambdaEquality productElimination imageElimination imageMemberEquality instantiate cumulativity hypothesis_subsumption equalityElimination promote_hyp Error :equalityIsType1,  universeEquality minusEquality lambdaEquality setEquality voidEquality isect_memberEquality dependent_pairFormation lambdaFormation dependent_set_memberEquality functionExtensionality

Latex:
\mforall{}n:\mBbbN{}.  \{m:\mBbbN{}|  m  =  fib(n)\} 



Date html generated: 2019_06_20-PM-02_25_23
Last ObjectModification: 2018_10_17-AM-10_43_29

Theory : num_thy_1


Home Index