Nuprl Lemma : int-dot-add-left

[as,bs,cs:ℤ List].  as bs ⋅ cs as ⋅ cs bs ⋅ cs supposing ||as|| ||bs|| ∈ ℤ


Proof




Definitions occuring in Statement :  int-vec-add: as bs integer-dot-product: as ⋅ bs length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] add: m int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q int-vec-add: as bs nil: [] it: top: Top cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q subtract: m le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True squash: T sq_stable: SqStable(P) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q less_than: a < b
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-base list_wf nat_wf list-cases int_dot_nil_left_lemma length_of_nil_lemma product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf int_subtype_base length_of_cons_lemma non_neg_length length_wf_nat subtype_rel-equal base_wf le_antisymmetry_iff length_wf condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel integer-dot-product_wf cons_wf colength_wf_list sq_stable__le equal-wf-T-base decidable__le false_wf not-le-2 subtract_wf not-ge-2 less-iff-le minus-minus add-swap list_subtype_base add-mul-special two-mul mul-distributes-right zero-mul one-mul minus-zero int_dot_cons_nil_lemma int_dot_cons_lemma decidable__equal_int not-equal-2 le-add-cancel2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality sqequalAxiom intEquality baseApply closedConclusion baseClosed applyEquality because_Cache equalityTransitivity equalitySymmetry unionElimination voidEquality promote_hyp hypothesis_subsumption productElimination instantiate cumulativity dependent_pairFormation sqequalIntensionalEquality addEquality minusEquality applyLambdaEquality imageMemberEquality imageElimination dependent_set_memberEquality independent_pairFormation multiplyEquality

Latex:
\mforall{}[as,bs,cs:\mBbbZ{}  List].    as  +  bs  \mcdot{}  cs  \msim{}  as  \mcdot{}  cs  +  bs  \mcdot{}  cs  supposing  ||as||  =  ||bs||



Date html generated: 2017_04_14-AM-08_55_52
Last ObjectModification: 2017_02_27-PM-03_39_59

Theory : omega


Home Index