Nuprl Lemma : int-dot-add-left
∀[as,bs,cs:ℤ List].  as + bs ⋅ cs ~ as ⋅ cs + bs ⋅ cs supposing ||as|| = ||bs|| ∈ ℤ
Proof
Definitions occuring in Statement : 
int-vec-add: as + bs
, 
integer-dot-product: as ⋅ bs
, 
length: ||as||
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
int: ℤ
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
int-vec-add: as + bs
, 
nil: []
, 
it: ⋅
, 
top: Top
, 
cons: [a / b]
, 
colength: colength(L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
subtract: n - m
, 
le: A ≤ B
, 
not: ¬A
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-base, 
list_wf, 
nat_wf, 
list-cases, 
int_dot_nil_left_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
equal_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
length_of_cons_lemma, 
non_neg_length, 
length_wf_nat, 
subtype_rel-equal, 
base_wf, 
le_antisymmetry_iff, 
length_wf, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
integer-dot-product_wf, 
cons_wf, 
colength_wf_list, 
sq_stable__le, 
equal-wf-T-base, 
decidable__le, 
false_wf, 
not-le-2, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
list_subtype_base, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
one-mul, 
minus-zero, 
int_dot_cons_nil_lemma, 
int_dot_cons_lemma, 
decidable__equal_int, 
not-equal-2, 
le-add-cancel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
sqequalAxiom, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
voidEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
instantiate, 
cumulativity, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
addEquality, 
minusEquality, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
multiplyEquality
Latex:
\mforall{}[as,bs,cs:\mBbbZ{}  List].    as  +  bs  \mcdot{}  cs  \msim{}  as  \mcdot{}  cs  +  bs  \mcdot{}  cs  supposing  ||as||  =  ||bs||
Date html generated:
2017_04_14-AM-08_55_52
Last ObjectModification:
2017_02_27-PM-03_39_59
Theory : omega
Home
Index