Nuprl Lemma : pairs-fpf_property
∀[A,B:Type].
  ∀eq1:EqDecider(A). ∀eq2:EqDecider(B). ∀L:(A × B) List.
    (no_repeats(A;fpf-domain(fpf(L)))
    ∧ (∀a:A. ((a ∈ fpf-domain(fpf(L))) ⇐⇒ ∃b:B. (<a, b> ∈ L)))
    ∧ ∀a∈dom(fpf(L)). l=fpf(L)(a) ⇒  no_repeats(B;l) ∧ (∀b:B. ((b ∈ l) ⇐⇒ (<a, b> ∈ L))))
Proof
Definitions occuring in Statement : 
pairs-fpf: fpf(L), 
fpf-all: ∀x∈dom(f). v=f(x) ⇒  P[x; v], 
fpf-domain: fpf-domain(f), 
no_repeats: no_repeats(T;l), 
l_member: (x ∈ l), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
pairs-fpf: fpf(L), 
fpf-domain: fpf-domain(f), 
pi1: fst(t), 
top: Top, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
exists: ∃x:A. B[x], 
squash: ↓T, 
pi2: snd(t), 
true: True, 
fpf-all: ∀x∈dom(f). v=f(x) ⇒  P[x; v], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
fpf-ap: f(x), 
eqof: eqof(d), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A, 
false: False, 
or: P ∨ Q, 
guard: {T}, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
list_wf, 
deq_wf, 
remove-repeats_property, 
map_wf, 
pi1_wf_top, 
member_map, 
l_member_wf, 
remove-repeats_wf, 
exists_wf, 
equal_wf, 
pi2_wf, 
squash_wf, 
true_wf, 
assert_wf, 
fpf-dom_wf, 
pairs-fpf_wf, 
subtype-fpf2, 
top_wf, 
list_induction, 
no_repeats_wf, 
reduce_wf, 
ifthenelse_wf, 
insert_wf, 
nil_wf, 
reduce_nil_lemma, 
no_repeats_nil, 
reduce_cons_lemma, 
bool_wf, 
equal-wf-T-base, 
no_repeats-insert, 
bnot_wf, 
not_wf, 
eqof_wf, 
uiff_transitivity, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
all_wf, 
iff_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
or_wf, 
and_wf, 
member-insert, 
subtype_rel_product, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_member, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality, 
sqequalRule, 
dependent_functionElimination, 
lambdaEquality, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
allFunctionality, 
independent_functionElimination, 
promote_hyp, 
dependent_pairFormation, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
inlFormation, 
inrFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
orFunctionality, 
instantiate
Latex:
\mforall{}[A,B:Type].
    \mforall{}eq1:EqDecider(A).  \mforall{}eq2:EqDecider(B).  \mforall{}L:(A  \mtimes{}  B)  List.
        (no\_repeats(A;fpf-domain(fpf(L)))
        \mwedge{}  (\mforall{}a:A.  ((a  \mmember{}  fpf-domain(fpf(L)))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}b:B.  (<a,  b>  \mmember{}  L)))
        \mwedge{}  \mforall{}a\mmember{}dom(fpf(L)).  l=fpf(L)(a)  {}\mRightarrow{}    no\_repeats(B;l)  \mwedge{}  (\mforall{}b:B.  ((b  \mmember{}  l)  \mLeftarrow{}{}\mRightarrow{}  (<a,  b>  \mmember{}  L))))
Date html generated:
2018_05_21-PM-09_32_00
Last ObjectModification:
2018_02_09-AM-10_26_47
Theory : finite!partial!functions
Home
Index