Nuprl Lemma : exp-convex2
∀[a,b:ℤ]. ∀[c:ℕ]. ∀[n:ℕ+].  |a - b| ≤ c supposing (|a^n - b^n| ≤ c^n) ∧ (0 ≤ a 
⇐⇒ 0 ≤ b)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
subtract: n - m
Lemmas referenced : 
less_than'_wf, 
absval_wf, 
subtract_wf, 
le_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
iff_wf, 
nat_plus_wf, 
nat_wf, 
decidable__le, 
exp-convex, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformimplies_wf, 
int_formual_prop_imp_lemma, 
squash_wf, 
true_wf, 
eq_int_wf, 
modulus_wf_int_mod, 
less_than_wf, 
subtype_rel_set, 
int_mod_wf, 
int-subtype-int_mod, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
exp-minus, 
iff_weakening_equal, 
absval_sym, 
minus-minus, 
minus-add, 
minus-one-mul, 
minus-one-mul-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
natural_numberEquality, 
isect_memberEquality, 
intEquality, 
voidElimination, 
unionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
minusEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityEquality, 
addEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  (|a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n)  \mwedge{}  (0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  b)
Date html generated:
2016_10_25-AM-10_59_36
Last ObjectModification:
2016_07_12-AM-07_06_49
Theory : general
Home
Index