Nuprl Lemma : exp-convex2
∀[a,b:ℤ]. ∀[c:ℕ]. ∀[n:ℕ+].  |a - b| ≤ c supposing (|a^n - b^n| ≤ c^n) ∧ (0 ≤ a ⇐⇒ 0 ≤ b)
Proof
Definitions occuring in Statement : 
exp: i^n, 
absval: |i|, 
nat_plus: ℕ+, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
subtract: n - m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
le: A ≤ B, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
nat_plus: ℕ+, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
squash: ↓T, 
true: True, 
less_than: a < b, 
less_than': less_than'(a;b), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
subtract: n - m
Lemmas referenced : 
less_than'_wf, 
absval_wf, 
subtract_wf, 
le_wf, 
exp_wf2, 
nat_plus_subtype_nat, 
iff_wf, 
nat_plus_wf, 
nat_wf, 
decidable__le, 
exp-convex, 
nat_plus_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMinus_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
intformimplies_wf, 
int_formual_prop_imp_lemma, 
squash_wf, 
true_wf, 
eq_int_wf, 
modulus_wf_int_mod, 
less_than_wf, 
subtype_rel_set, 
int_mod_wf, 
int-subtype-int_mod, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
exp-minus, 
iff_weakening_equal, 
absval_sym, 
minus-minus, 
minus-add, 
minus-one-mul, 
minus-one-mul-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
natural_numberEquality, 
isect_memberEquality, 
intEquality, 
voidElimination, 
unionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
minusEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
hyp_replacement, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
lambdaFormation, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
equalityEquality, 
addEquality
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[c:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    |a  -  b|  \mleq{}  c  supposing  (|a\^{}n  -  b\^{}n|  \mleq{}  c\^{}n)  \mwedge{}  (0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  b)
Date html generated:
2016_10_25-AM-10_59_36
Last ObjectModification:
2016_07_12-AM-07_06_49
Theory : general
Home
Index