Nuprl Lemma : peval-pnegate

[x:formula()]. ∀[v:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹].  peval(v;pnegate(x)) = ¬bpeval(v;x)


Proof




Definitions occuring in Statement :  pnegate: pnegate(x) peval: peval(v0;x) psub: a ⊆ b pvar?: pvar?(v) formula: formula() bnot: ¬bb assert: b bool: 𝔹 uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} subtype_rel: A ⊆B int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  pvar: pvar(name) formula_size: formula_size(p) peval: peval(v0;x) valuation-exists-ext extend-val: extend-val(v0;g;x) formula_ind: formula_ind pnegate: pnegate(x) pnot: pnot(sub) bnot: ¬bb bfalse: ff assert: b cand: c∧ B less_than: a < b squash: T pand: pand(left;right) por: por(left;right) pimp: pimp(left;right) psub: a ⊆ b so_lambda: λ2x.t[x] so_apply: x[s] band: p ∧b q bor: p ∨bq
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf formula_wf psub_wf assert_wf pvar?_wf bool_wf le_wf formula_size_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf intformeq_wf int_formula_prop_eq_lemma formula-ext eq_atom_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base bnot_wf peval_wf pvar_wf eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom decidable__lt itermAdd_wf int_term_value_add_lemma lelt_wf pnot_wf pand_wf por_wf pimp_wf nat_wf subtype_rel_self set_wf bnot_thru_band bor_wf bnot_thru_bor subtype_rel_dep_function subtype_rel_sets peval-unroll btrue_wf valuation-exists-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality functionEquality setEquality productEquality applyEquality because_Cache equalityTransitivity equalitySymmetry productElimination unionElimination applyLambdaEquality hypothesis_subsumption dependent_set_memberEquality promote_hyp tokenEquality equalityElimination instantiate cumulativity atomEquality functionExtensionality imageElimination addEquality inrFormation inlFormation

Latex:
\mforall{}[x:formula()].  \mforall{}[v:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].    peval(v;pnegate(x))  =  \mneg{}\msubb{}peval(v;x)



Date html generated: 2018_05_21-PM-08_54_42
Last ObjectModification: 2017_07_26-PM-06_18_20

Theory : general


Home Index