Nuprl Lemma : peval-pnegate
∀[x:formula()]. ∀[v:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹].  peval(v;pnegate(x)) = ¬bpeval(v;x)
Proof
Definitions occuring in Statement : 
pnegate: pnegate(x)
, 
peval: peval(v0;x)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
ext-eq: A ≡ B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
pvar: pvar(name)
, 
formula_size: formula_size(p)
, 
peval: peval(v0;x)
, 
valuation-exists-ext, 
extend-val: extend-val(v0;g;x)
, 
formula_ind: formula_ind, 
pnegate: pnegate(x)
, 
pnot: pnot(sub)
, 
bnot: ¬bb
, 
bfalse: ff
, 
assert: ↑b
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
pand: pand(left;right)
, 
por: por(left;right)
, 
pimp: pimp(left;right)
, 
psub: a ⊆ b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
band: p ∧b q
, 
bor: p ∨bq
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
formula_wf, 
psub_wf, 
assert_wf, 
pvar?_wf, 
bool_wf, 
le_wf, 
formula_size_wf, 
int_seg_wf, 
int_seg_properties, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
formula-ext, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
bnot_wf, 
peval_wf, 
pvar_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
decidable__lt, 
itermAdd_wf, 
int_term_value_add_lemma, 
lelt_wf, 
pnot_wf, 
pand_wf, 
por_wf, 
pimp_wf, 
nat_wf, 
subtype_rel_self, 
set_wf, 
bnot_thru_band, 
bor_wf, 
bnot_thru_bor, 
subtype_rel_dep_function, 
subtype_rel_sets, 
peval-unroll, 
btrue_wf, 
valuation-exists-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
functionEquality, 
setEquality, 
productEquality, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
unionElimination, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
promote_hyp, 
tokenEquality, 
equalityElimination, 
instantiate, 
cumulativity, 
atomEquality, 
functionExtensionality, 
imageElimination, 
addEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}[x:formula()].  \mforall{}[v:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].    peval(v;pnegate(x))  =  \mneg{}\msubb{}peval(v;x)
Date html generated:
2018_05_21-PM-08_54_42
Last ObjectModification:
2017_07_26-PM-06_18_20
Theory : general
Home
Index