Nuprl Lemma : ulist-ext

[T:Type]. ulist(T) ≡ List


Proof




Definitions occuring in Statement :  ulist: ulist(T) list: List ext-eq: A ≡ B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B ulist: ulist(T) urec: urec(F) tunion: x:A.B[x] pi2: snd(t) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top prop: decidable: Dec(P) or: P ∨ Q compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  so_apply: x[s] so_lambda: λ2x.t[x] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] b-union: A ⋃ B
Lemmas referenced :  istype-universe ulist_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than fun_exp0_lemma subtract-1-ge-0 list-ext subtype_rel_transitivity fun_exp_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le b-union_wf unit_wf2 list_wf fun_exp_unroll eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int equal_wf le_wf int_term_value_subtract_lemma itermSubtract_wf satisfiable-full-omega-tt subtract_wf subtype_rel_wf subtype_rel_product subtype_rel_self subtype_rel_b-union list-cases product_subtype_list colength-cons-not-zero colength_wf_list set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma istype-nat ifthenelse_wf btrue_wf fun_exp1_lemma false_wf bfalse_wf subtype_urec continuous'-monotone-bunion continuous'-monotone-constant continuous'-monotone-product continuous'-monotone-identity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis instantiate extract_by_obid isectElimination universeEquality lambdaEquality_alt imageElimination hypothesisEquality applyEquality universeIsType setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination functionIsTypeImplies inhabitedIsType voidEquality lambdaEquality dependent_set_memberEquality_alt unionElimination productEquality because_Cache equalityElimination equalityTransitivity equalitySymmetry equalityIstype promote_hyp cumulativity lambdaFormation computeAll isect_memberEquality intEquality dependent_pairFormation dependent_set_memberEquality hypothesis_subsumption applyLambdaEquality baseApply closedConclusion baseClosed sqequalBase dependent_pairEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  ulist(T)  \mequiv{}  T  List



Date html generated: 2019_10_15-AM-11_32_14
Last ObjectModification: 2019_06_26-PM-03_58_07

Theory : general


Home Index