Nuprl Lemma : ulist-ext
∀[T:Type]. ulist(T) ≡ T List
Proof
Definitions occuring in Statement : 
ulist: ulist(T)
, 
list: T List
, 
ext-eq: A ≡ B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
ulist: ulist(T)
, 
urec: urec(F)
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
compose: f o g
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
b-union: A ⋃ B
Lemmas referenced : 
istype-universe, 
ulist_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
fun_exp0_lemma, 
subtract-1-ge-0, 
list-ext, 
subtype_rel_transitivity, 
fun_exp_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
b-union_wf, 
unit_wf2, 
list_wf, 
fun_exp_unroll, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
equal_wf, 
le_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
subtype_rel_wf, 
subtype_rel_product, 
subtype_rel_self, 
subtype_rel_b-union, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
ifthenelse_wf, 
btrue_wf, 
fun_exp1_lemma, 
false_wf, 
bfalse_wf, 
subtype_urec, 
continuous'-monotone-bunion, 
continuous'-monotone-constant, 
continuous'-monotone-product, 
continuous'-monotone-identity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
instantiate, 
extract_by_obid, 
isectElimination, 
universeEquality, 
lambdaEquality_alt, 
imageElimination, 
hypothesisEquality, 
applyEquality, 
universeIsType, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
voidEquality, 
lambdaEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
productEquality, 
because_Cache, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
cumulativity, 
lambdaFormation, 
computeAll, 
isect_memberEquality, 
intEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
hypothesis_subsumption, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
dependent_pairEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  ulist(T)  \mequiv{}  T  List
Date html generated:
2019_10_15-AM-11_32_14
Last ObjectModification:
2019_06_26-PM-03_58_07
Theory : general
Home
Index