Nuprl Lemma : fl-meet-0-1

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:T].  ((x=0) ∧ (x=1) 0 ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  face-lattice1: (x=1) face-lattice0: (x=0) face-lattice: face-lattice(T;eq) lattice-0: 0 lattice-meet: a ∧ b lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T guard: {T} prop: or: P ∨ Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) implies:  Q face-lattice-constraints: face-lattice-constraints(x) all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) fset-pair: {a,b} fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] empty-fset: {} fl-deq: fl-deq(T;eq) subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice true: True squash: T iff: ⇐⇒ Q lattice-fset-meet: /\(s) rev_implies:  Q
Lemmas referenced :  deq_wf istype-universe fset-singleton_wf fset_wf fset-member_wf equal_wf member-fset-pair fset-pair_wf union-deq_wf deq-fset_wf member-fset-singleton free-dlwc-satisfies-constraints face-lattice-constraints_wf list_accum_cons_lemma istype-void list_accum_nil_lemma face-lattice0-is-inc face-lattice1-is-inc face-lattice0_wf face-lattice1_wf fl-deq_wf face-lattice_wf lattice-fset-meet_wf bdd-distributive-lattice-subtype-bdd-lattice decidable-equal-deq lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf uall_wf bounded-lattice-structure-subtype fset-union_wf lattice-axioms_wf bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf empty-fset_wf lattice-0_wf squash_wf true_wf lattice-fset-meet-union lattice-fset-meet-singleton subtype_rel_self iff_weakening_equal reduce_nil_lemma lattice-1-meet
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis universeIsType hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin axiomEquality isectIsTypeImplies inhabitedIsType extract_by_obid instantiate universeEquality inrFormation applyLambdaEquality hyp_replacement inlFormation equalitySymmetry equalityTransitivity dependent_functionElimination independent_isectElimination productElimination unionEquality because_Cache inrEquality cumulativity inlEquality rename unionElimination lambdaFormation lambdaEquality_alt unionIsType independent_functionElimination inlEquality_alt inrEquality_alt voidElimination lambdaFormation_alt equalityIsType1 applyEquality productEquality setElimination natural_numberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].    ((x=0)  \mwedge{}  (x=1)  =  0)



Date html generated: 2020_05_20-AM-08_51_33
Last ObjectModification: 2018_11_08-PM-06_00_35

Theory : lattices


Home Index