Nuprl Lemma : swap_adjacent_decomp

[A:Type]
  ∀i:ℕ. ∀L:A List.
    ∃X,Y:A List
     ((L (X [L[i]; L[i 1]] Y) ∈ (A List)) ∧ (swap(L;i;i 1) (X [L[i 1]; L[i]] Y) ∈ (A List))) 
    supposing 1 < ||L||


Proof




Definitions occuring in Statement :  swap: swap(L;i;j) select: L[n] length: ||as|| append: as bs cons: [a b] nil: [] list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top less_than: a < b squash: T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ge: i ≥  so_apply: x[s] nat: cand: c∧ B le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q listp: List+ sq_type: SQType(T) select: L[n] cons: [a b] subtract: m int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  all_wf list_wf isect_wf less_than_wf subtract_wf length_wf exists_wf equal_wf append_wf cons_wf select_wf subtract-add-cancel decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt nil_wf list_ind_cons_lemma list_ind_nil_lemma length-append length_of_cons_lemma non_neg_length set_wf primrec-wf2 nat_properties itermAdd_wf int_term_value_add_lemma nat_wf member-less_than tl_wf false_wf list_extensionality listp_properties length_tl iff_weakening_equal decidable__equal_int intformeq_wf int_formula_prop_eq_lemma squash_wf true_wf subtype_rel_self subtype_base_sq int_subtype_base select_cons_tl select_tl lelt_wf add-associates add-swap add-commutes zero-add swap_wf swap_length swapped_select and_wf list_decomp hd_wf length_wf_nat swap_cons add-subtract-cancel int_seg_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin rename setElimination introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality addEquality natural_numberEquality because_Cache productEquality independent_isectElimination dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation imageElimination productElimination applyLambdaEquality equalityTransitivity equalitySymmetry universeEquality applyEquality imageMemberEquality baseClosed dependent_set_memberEquality instantiate minusEquality hyp_replacement

Latex:
\mforall{}[A:Type]
    \mforall{}i:\mBbbN{}.  \mforall{}L:A  List.
        \mexists{}X,Y:A  List
          ((L  =  (X  @  [L[i];  L[i  +  1]]  @  Y))  \mwedge{}  (swap(L;i;i  +  1)  =  (X  @  [L[i  +  1];  L[i]]  @  Y))) 
        supposing  i  +  1  <  ||L||



Date html generated: 2018_05_21-PM-06_21_09
Last ObjectModification: 2018_05_19-PM-05_34_38

Theory : list!


Home Index