Nuprl Lemma : bs_tree_lookup_wf

[E:Type]. ∀[cmp:comparison(E)]. ∀[x:E]. ∀[tr:ordered_bs_tree(E;cmp)].
  (bs_tree_lookup(cmp;x;tr) ∈ (∃z:E [(((cmp x) 0 ∈ ℤ) ∧ z ∈ tr)]) ∨ (↓∀z:E. (z ∈ tr  ((cmp x) 0 ∈ ℤ)))))


Proof




Definitions occuring in Statement :  bs_tree_lookup: bs_tree_lookup(cmp;x;tr) ordered_bs_tree: ordered_bs_tree(E;cmp) member_bs_tree: x ∈ tr comparison: comparison(T) uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A squash: T implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ordered_bs_tree: ordered_bs_tree(E;cmp) all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q prop: and: P ∧ Q comparison: comparison(T) so_apply: x[s] guard: {T} member_bs_tree: x ∈ tr bs_tree_lookup: bs_tree_lookup(cmp;x;tr) bs_tree_ind: bs_tree_ind bst_null: bst_null() false: False bst_leaf: bst_leaf(value) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b not: ¬A nequal: a ≠ b ∈  bs_tree_ordered: bs_tree_ordered(E;cmp;tr) bst_node: bst_node(left;value;right) has-value: (a)↓ less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B iff: ⇐⇒ Q sq_exists: x:A [B[x]]
Lemmas referenced :  ordered_bs_tree_wf comparison_wf bs_tree-induction bs_tree_ordered_wf bs_tree_lookup_wf1 unit_wf2 equal-wf-T-base member_bs_tree_wf all_wf not_wf equal_wf bs_tree_wf false_wf bst_null_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int and_wf bst_leaf_wf bst_node_wf value-type-has-value int-value-type lt_int_wf assert_of_lt_int top_wf less_than_wf decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf or_wf le_wf itermMinus_wf int_term_value_minus_lemma squash_wf true_wf comparison-anti subtype_rel_self iff_weakening_equal int_subtype_base sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination hypothesisEquality isect_memberEquality because_Cache dependent_functionElimination universeEquality lambdaEquality functionEquality unionEquality lambdaFormation unionElimination productEquality intEquality applyEquality baseClosed independent_functionElimination voidElimination natural_numberEquality equalityElimination productElimination independent_isectElimination independent_pairFormation dependent_pairFormation promote_hyp instantiate cumulativity dependent_set_memberEquality applyLambdaEquality callbyvalueReduce lessCases axiomSqEquality voidEquality imageMemberEquality imageElimination approximateComputation int_eqEquality inlFormation inrFormation hyp_replacement equalityUniverse levelHypothesis minusEquality inlEquality inrEquality

Latex:
\mforall{}[E:Type].  \mforall{}[cmp:comparison(E)].  \mforall{}[x:E].  \mforall{}[tr:ordered\_bs\_tree(E;cmp)].
    (bs\_tree\_lookup(cmp;x;tr)  \mmember{}  (\mexists{}z:E  [(((cmp  z  x)  =  0)  \mwedge{}  z  \mmember{}  tr)])
      \mvee{}  (\mdownarrow{}\mforall{}z:E.  (z  \mmember{}  tr  {}\mRightarrow{}  (\mneg{}((cmp  z  x)  =  0)))))



Date html generated: 2019_10_15-AM-10_47_54
Last ObjectModification: 2018_08_21-PM-01_58_46

Theory : tree_1


Home Index